

EFFICIENCY OF SUNFLOWER SEEDS INOCULATION WITH DIFFERENT MICROORGANISMS

Andrii TYSHCHENKO, Olena TYSHCHENKO, Oleksandr OCHKALA, Serhii STEPANOV,
Vira KONOVALOVA, Oleksandr KOBIAI

Institute of Climate-Smart Agriculture of the National Academy of Agrarian Sciences of Ukraine,
24 Mayatska doroga Street, vil. Khlybodarske, Odesa district, Odesa region, 67667, Ukraine

Corresponding author email: tischenko_andriy@ukr.net

Abstract

The aim of the study was to determine the effectiveness of sunflower seeds inoculation with various microorganisms and their impact on enhancing plant resistance to negative environmental factors. The study on the reaction of sunflower hybrids to different growing conditions was conducted at two locations: 'Location 1', which imposed limiting conditions, and 'Location 2', which imposed optimal conditions. The study was conducted over the period 2023-2024. In the optimal conditions, the highest weight of 1000 seeds (70.44 g) was observed in the variant with $N_{40}P_{60}$, while the highest oil content of 50.3% and the actual yield of 2763 kg/ha were achieved in the variant with $N_{20}P_{30}$ and multicomponent inoculation. In the context of limiting conditions, the variant with $N_{40}P_{60}$ demonstrated the highest oil content (42.3%) and actual yield (1167 kg/ha). Conversely, the variant with $N_{20}P_{30}$ and multicomponent inoculation exhibited the highest weight of 1000 seeds (47.01 g).

Key words: sunflower, fertilizer, inoculation, yield, oil content.

INTRODUCTION

Sunflower is the main crop in Ukraine and accounts for 70% of the oilseeds sown and 85% of the gross harvest. High demand for oil and meal both in Ukraine and in other countries encourages producers to grow sunflower as a highly profitable crop, which is one of the main sources of their income (Melikh & Pasmenko, 2015; Hladni, 2016). The value of sunflower seeds relates to the fact that they contain essential vitamins and are a source of vitamin D, as well as B vitamins such as thiamine, niacin and folate, including vitamin E, which is a powerful antioxidant. The presence of vitamins helps to normalize the acid-alkaline balance of a person and strengthens their skin. In addition, sunflower seeds are rich in minerals such as magnesium, phosphorus, selenium and copper (Malunjkar et al., 2024).

However, the expansion of sunflower cultivation in Ukraine leads to increasing degradation of ecosystem, including soils, which will have very negative consequences in the future. Therefore, to meet the growing global demand for food in the context of climate change and reduce the degree of ecosystem degradation, it is necessary to maintain and

increase agricultural productivity while reducing resources, especially those harmful to the environment (mineral fertilizers, pesticides, etc.), by enhancing the role of microorganisms in crop cultivation technologies (Tyshchenko et al., 2020). Beneficial soil microorganisms provide plants with nutrients, increase their resistance to abiotic and biotic stresses, and improve their growth and development, as well as increase yields (Nanjundappa et al., 2019; Jamaluddin, 2019; Enebe & Babalola, 2018).

Plant growth promoting rhizobacteria (PGPR) is a group of bacteria that colonize the rhizosphere and produce substances that improve plant growth and development and enhance their resilience to adverse factors (Miransari, 2011; Vozhehova et al., 2022). The increase in various agronomic yields by PGPR was due to the production of phytohormones, phosphate mobilization, production of siderophores and antibiotics, inhibition of ethylene synthesis in plants and induction of systemic plant resistance to pathogens. Among PGPRs, nitrogen-fixing bacteria (NFB) and phosphorus-solubilizing bacteria (PSB) are important for crops as they increase nitrogen (N) and phosphorus (P) (Singh et al., 2011) uptake and, consequently, increase

crop yields (Daiss et al., 2008; Javaid, 2009; Zarabi et al., 2011).

Among different microorganisms that colonies the rhizosphere, arbuscular mycorrhizal fungi (AMF) are unique because they are partly inside the root and partly outside the root, thus affecting other soil microorganisms, as well as plant growth and development (Redecker et al., 2000; Tyshchenko et al., 2023). The association of AMF and plants is one of the oldest symbiotic relationships in the biological world (Rimington et al., 2018). AMF, forming a symbiotic association with higher plants, promotes the absorption of plant nutrients, which is usually limited by diffusion, such as phosphorus, zinc, copper etc. (Bagyaraj et al., 2015). AMF inoculation improves crop nutrition, growth and yields (Desai et al., 2016), especially AMF improves phosphorus nutrition of plants, to the extent of saving 50% of P fertilizer application, without adverse effects on their growth, development and yield (Jyothi & Bagyaraj, 2018; Thilagar et al., 2016). In addition, AMF also improves plant resilience mechanisms against biotic and abiotic stresses by stimulating the synthesis of secondary metabolites such as phenolic compounds, phytoalexins and peroxidases (Mathimaran et al., 2017; Muthukumar et al., 2019; Gholinezhad & Darvishzadeh, 2021; Kabir et al., 2020; Meddich et al., 2015). Several researchers have

reported the role of AMF in improving water availability in various host plants such as chicory, grain corn, chickpea, sesame and tomato (Leventis et al., 2021; Langeroodi et al., 2020; Hashem et al., 2019; Ren et al., 2019), due to hyphae, which increase the area of the plant root system in the rhizosphere and improve water absorption (Langeroodi et al., 2021).

MATERIALS AND METHODS

The study on the reaction of eight sunflower hybrids to different growing conditions was conducted at 'Location 1' - Odesa State Agricultural Station of the ICSA NAAS, Khlibodarske village, Odesa region, Odesa district (46°29.05'N; 30°35.31'E) and at 'Location 2' - State Farm 'Pioneer' in Lyubymivka village, Kherson region, Beryslav district (47°23.34'N; 33°43.00'E) during 2023-2024.

The hybrids were tested on first-order plots of 275 m² and second-order plots of 25 m² in three replications using the randomized replication method (blocks), with the seeding rate adjusted to 55,000 viable seeds per ha. The research was carried out according to the generally accepted methodology, the number of chemical treatments was adjusted with accordance to the growing conditions and the presence of weeds, diseases and pests (Table 1).

Table 1. Experimental design

Hybrids of sunflower	Fertilization and inoculation
<i>Niagara</i> (102-106 days ¹)	Control (without fertilizer and inoculation)
<i>Hysun 158 IT</i> (108-112 days ¹)	N ₄₀ P ₆₀
<i>Hysun 280</i> (114-117 days ¹)	N ₂₀ P ₃₀
<i>Bella</i> (100-105 days ¹)	Inoculation with nitrogen-fixing bacteria (NFB)
<i>P64LE136</i> (112-116 days ¹)	Inoculation with phosphorus-solubilizing bacteria (PSB)
<i>Generalis</i> (108-110 days ¹)	Inoculation with arbuscular mycorrhizal fungi (AMF)
<i>Hysun 232 IT H0</i> (112-118 days ¹)	Inoculation with NFB + PSB + AMF
<i>P63LE113</i> (104-108 days ¹)	N ₂₀ P ₃₀ + Inoculation with nitrogen-fixing bacteria (NFB)
	N ₂₀ P ₃₀ + Inoculation with phosphorus-solubilizing bacteria (PSB)
	N ₂₀ P ₃₀ + Inoculation with arbuscular mycorrhizal fungi (AMF)
	N ₂₀ P ₃₀ + Inoculation with NFB + PSB + AMF

¹ - Period from germination to harvest

Location 1 is represented by a southern heavy-loamy, residually slightly saline black soil. The arable layer contains 2.1% humus; the content of mineral nitrogen is 2.7 mg per 100 g of soil, mobile phosphorus content is 3.7, and exchangeable potassium content reaches 39 mg per 100 g of soil, respectively; the pH of water

extract is 6.8-7.1; the equilibrium bulk density is 1.45 g/cm³, soil porosity is 44.1%, and water permeability is 1.16 mm/min. The fore-crop is sunflower. Location 2 is represented by a southern heavy-loamy black soil. The topsoil contains 2.5% humus; the content of mineral nitrogen is 3.8 mg per 100 g of soil, mobile

phosphorus content is 5.2, and exchangeable potassium content is 54 mg per 100 g of soil; the pH of water extract is 6.9-7.3; the equilibrium bulk density is 1.37 g/cm³, soil porosity is 50.2%, and water permeability is 1.24 mm/min. The fore-crop is winter wheat.

Weather conditions during the years of the study were unstable and differed in terms of both the

amount and distribution of precipitation and temperature.

The mean temperatures, precipitation and relative humidity for all experimental seasons are represented in Table 2, along with the long-term mean values.

Table 2. Weather conditions during the research

Month, period	Location 1			2023			2024		
	T (°C)	P (mm)	φ, %	T (°C)	P (mm)	φ, %	T (°C)	P (mm)	φ, %
April	10.0	28.0	79	10.0	116.0	81	14.6	70.0	67
May	15.9	33.2	62	15.9	7.0	57	15.8	35.0	62
June	20.8	48.5	65	20.8	32.0	61	22.7	77.0	66
July	23.4	45.0	61	23.4	48.0	64	27.3	18.0	48
August	23.1	29.4	59	23.1	15.0	62	25.0	20.0	52
September	17.7	2.0	55	17.7	0.0	57	21.8	164.0	62
April - August	18.6	184.1	65	18.6	218.0	65	21.1	220.0	59
April - September	18.5	186.1	63	18.5	218.0	64	21.2	384.0	59
Location 2									
Month, period	Long-term mean			2023			2024		
	T (°C)	P (mm)	φ, %	T (°C)	P (mm)	φ, %	T (°C)	P (mm)	φ, %
April	10.7	32.0	76	10.3	72.0	84	15.1	37.0	82
May	17.1	30.0	69	16.4	12.3	66	16.2	58.0	71
June	21.3	40.0	65	21.0	35.0	65	24.0	47.8	68
July	23.7	45.0	60	24.0	50.0	63	25.6	0.4	62
August	23.3	20.0	59	25.0	52.0	62	26.7	1.6	59
September	17.3	10.0	68	20.3	0.1	56	22.1	15.0	61
April - August	19.2	167.0	66	19.3	221.3	68	21.5	144.8	68
April - September	18.9	177.0	66	19.5	221.4	66	21.6	159.8	67

RESULTS AND DISCUSSIONS

In the control variant (without fertilization and inoculation), the average diameter of the head under optimal conditions was 17.6 cm, the number of seeds in the head was 748 seeds with the weight of 1000 seeds of 63.56 g, oil content of 46.8%, biological yield of 2379 kg/ha and actual yield of 2213 kg/ha, while under limiting conditions - 10.8 cm, 446 seeds, 42.16 g, 37.7%, 939 kg/ha and 832 kg/ha, respectively. The highest yields among the hybrids under optimal conditions were obtained in *Niagara* - 2451 and *Hysun 232 IT H0* - 2406 kg/ha, under limiting conditions *P63LE113* - 906, *Hysun 158 IT* - 891 and *Bella* - 874 kg/ha (Table 3).

The use of mono-inoculation contributed to the increase in the crop structure constituents and, accordingly, both biological and actual yields. Thus, under inoculation with nitrogen-fixing bacteria, the average diameter of the head under optimal conditions was 20.1 cm, the number of seeds in the head was 801 seeds with the weight of 1000 seeds of 66.72 g, the oil content of 47.8%, the biological yield of 2671 kg/ha and

the actual yield of 2366 kg/ha, while under limiting conditions - 11.5 cm, 457 seeds, 43.97 g, 38.7%, 1005 kg/ha and 934 kg/ha, respectively. Inoculation with phosphorus-solubilizing bacteria increased the diameter of the head compared to the control under optimal conditions by 1.3 cm, the number of seeds in the head by 30 seeds, the weight of 1000 seeds by 1.7 g, the oil content by 0.6%, the biological yield by 159 kg/ha and the actual yield by 112 kg/ha, while under limiting conditions - by 0.3 cm, 9 seeds, 0.59 g, 0.9%, 33 kg/ha and 62 kg/ha, respectively. Inoculation with arbuscular mycorrhizal fungi also increased the diameter of the head compared to the control under optimal conditions by 1.2 cm, the number of seeds in the head by 26 seeds, the weight of 1000 seeds by 1.56 g, the oil content by 0.6%, the biological yield by 140 kg/ha and the actual yield by 86 kg/ha, while under limiting conditions - by 0.5 cm, 10 seeds, 0.71 g, 0.8%, 38 kg/ha and 43 kg/ha, respectively.

However, compared to mono-inoculation, multicomponent inoculation (nitrogen-fixing + phosphorus-solubilizing bacteria + arbuscular

mycorrhizal fungi) was more effective. Thus, the diameter of the head under optimal conditions was 19.8 cm, the number of seeds in the head was 798 seeds with the weight of 1000 seeds of 66.59 g, the oil content of 48.5%, the biological yield of 2657 kg/ha and the actual yield of 2403 kg/ha, while under limiting conditions - 11.9 cm, 466 seeds, 44.15 g, 39.4%, 1030 kg/ha and 954 kg/ha, respectively.

The use of fertilizer at the rate of N₂₀P₃₀ increased, compared to the control, the indicators of the crop structure and yield elements both under optimal and limiting conditions: the head diameter by 2.3 cm and 1.7 cm, number of seeds in the head by 56 and 31 seeds, the weight of 1000 seeds by 3.37 and 3.08 g, the oil content by 1.8 and 2.6%, the biological yield by 312 and 140 kg/ha and the actual yield by 142 and 153 kg/ha, respectively; it also slightly increased the indicators of complex inoculation excepting the actual yield under optimal conditions. Thus, the diameter of the head under optimal conditions increased by 0.1 cm, under limiting conditions - by 0.6 cm, the number of seeds in the head - by 6 and 11 seeds, the weight of 1000 seeds by 0.34 and 1.09 g, the oil content by 0.1 and 0.7%, the biological yield by 34 and 49 kg/ha, respectively, and the actual yield under limiting conditions by 31 kg/ha, while the actual yield under optimal conditions was lower by 48 kg/ha. The combination of mono-inoculation and fertilizer at the rate of N₂₀P₃₀ exceeded not only the control, but also the application of fertilizer at the rate of N₂₀P₃₀. The use of poly-component inoculation and N₂₀P₃₀ not only increased the crop structure constituents and sunflower seed yield compared to mono-inoculation and N₂₀P₃₀, but was almost at the same level as the variant with fertilizer application at the rate of N₄₀P₆₀, and even exceeded it by some indicators. Under N₄₀P₆₀ application, the diameter of the head under optimal conditions was 22.6 cm, under limiting conditions - 13.5 cm, which surpassed the control by 5.0 and 2.7 cm, respectively, the number of seeds in the head was 869 and 500 seeds, which was 121 and 54 seeds higher than in the control, the weight of 1000 seeds was 70.44 and 46.93 g, which was 6.88 and 4.77 g higher, respectively, the oil content - 49.8 and 42.3%, which surpassed the control by 3.0 and

4.6%, respectively, the biological yield - 3060 and 1173 kg/ha, which surpassed the control by 681 and 234 kg/ha, respectively, and the actual yield - 2657 and 1167 kg/ha, which surpassed the control variant by 444 and 335 kg/ha, respectively.

Instead, in the combination of poly-component inoculation and N₂₀P₃₀, the diameter of the head was smaller than that at N₄₀P₆₀ by 0.2 cm, both under optimal conditions and under limiting conditions, the number of seeds in the head was 10 seeds less under optimal and 12 seeds less under limiting conditions, the weight of 1000 seeds was 0.67 g higher under optimal conditions, and 0.08 g higher under limiting conditions. The oil content in the variant with poly-component inoculation and N₂₀P₃₀ under optimal conditions was 0.5% higher than that at N₄₀P₆₀, while under limiting conditions it was 1.2% lower. The biological yield of poly-component inoculation and N₂₀P₃₀ was lower than that at N₄₀P₆₀ by 63 kg/ha under optimal conditions and by 25 kg/ha under limiting conditions. However, the actual yield under poly-component inoculation and N₂₀P₃₀ was 106 kg/ha higher under optimal conditions, while under limiting conditions it was 54 kg/ha lower. The largest diameter of the head under optimal conditions was formed by the hybrids *Niagara* - 23.0 cm and *Hysun 232 IT H0* - 23.1 cm in the variant with N₄₀P₆₀ and by the hybrid *Niagara* - 23.1 cm in the variant with poly-component inoculation and N₂₀P₃₀, while under limiting conditions the hybrid *P63LE113* was characterized with the largest head diameter of 14.3 cm. The greatest number of seeds under the optimal conditions was formed by *Niagara* hybrid - 908 seeds, under limiting conditions - by *P63LE113* - 529 seeds. The highest weight of 1000 seeds under optimal conditions were attributed to the hybrids *Hysun 232 IT H0* - 71.95 g in the variant with N₄₀P₆₀ and *Niagara* - 71.93 g under poly-component inoculation and N₂₀P₃₀, while under limiting conditions by *P63LE113* - 49.69 g. The highest oil content under optimal conditions was recorded for the hybrid *Hysun 232 IT H0* - 51.5% in the variant with N₄₀P₆₀ and 51.4% under poly-component inoculation and N₂₀P₃₀, while under limiting conditions the highest oil content was attributed to the hybrid *Bella* - 43.3%

Table 3. Yield structure, oil content, biological and actual yield of sunflower hybrids depending on fertilization and inoculation with bacterial and fungal preparations (2023-2024)

Variant (Factor B)	Hybrid (Factor C)	Head diameter, cm		Number of seeds in the head		Weight of 1000 seeds, g		Oil content, %		Biological yield, kg/ha		Actual yield, kg/ha		
		Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	
Control (without fertilizer and inoculation)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	<i>Niagara</i>	10.3	18.2	426	799	40.35	65.47	36.1	47.7	860	2617	754	2451	
	<i>Hyson 158 IT</i>	11.2	17.0	463	706	43.77	61.43	39.1	46.6	1012	2169	891	1995	
	<i>Hyson 280</i>	10.1	17.3	417	723	39.51	62.25	35.3	44.8	825	2252	755	2150	
	<i>Bella</i>	11.0	17.2	454	713	42.96	61.98	38.4	45.6	975	2208	874	2027	
	<i>P64/E136</i>	10.9	17.6	451	746	42.64	63.49	38.1	46.2	961	2368	855	2167	
	<i>Generalis</i>	10.9	17.4	449	729	42.52	62.70	38.0	46.1	955	2285	839	2165	
	<i>Hyson 232 IT/H0</i>	10.5	18.3	436	792	41.26	66.09	36.9	49.1	899	2616	781	2406	
	<i>P63/E113</i>	11.3	18.1	468	780	44.27	65.07	39.6	48.3	1035	2537	906	2347	
	Average	10.8	17.6	446	748	42.16	63.56	37.7	46.8	939	2379	832	2213	
$N_{40}P_{30}$	<i>Niagara</i>	13.4	23.0	496	908	46.59	71.79	41.9	49.7	1155	3260	1098	2881	
	<i>Hyson 158 IT</i>	13.5	22.0	499	826	46.87	68.64	42.2	49.7	1169	2834	1203	2413	
	<i>Hyson 280</i>	12.6	22.4	466	859	43.80	69.88	39.4	49.0	1021	3000	1056	2640	
	<i>Bella</i>	13.8	22.2	512	842	48.09	69.28	43.3	49.6	1231	2918	1234	2479	
	<i>P64/E136</i>	13.6	22.8	505	871	47.45	70.91	42.7	49.8	1199	3088	1200	2619	
	<i>Generalis</i>	13.6	22.4	504	858	47.32	69.88	42.6	49.0	1192	2999	1177	2639	
	<i>Hyson 232 IT/H0</i>	13.1	23.1	486	901	45.62	71.95	41.1	51.5	1108	3243	1088	2834	
	<i>P63/E113</i>	14.3	22.9	529	884	49.69	71.23	44.7	50.5	1315	3148	1282	2753	
	Average	13.5	22.6	500	869	46.93	70.44	42.3	49.8	1173	3060	1167	2657	
	<i>Niagara</i>	12.2	20.8	465	841	44.11	70.03	39.3	48.7	1025	2946	910	2555	
$N_{20}P_{30}$	<i>Hyson 158 IT</i>	12.7	19.1	483	771	45.81	64.19	40.8	48.4	1106	2472	1030	2156	
	<i>Hyson 280</i>	12.1	19.3	462	781	43.85	64.99	39.1	47.5	1013	2537	925	2298	
	<i>Bella</i>	12.8	19.5	490	789	46.48	65.68	41.4	48.2	1139	2592	1044	2224	
	<i>P64/E136</i>	12.6	19.9	480	805	45.51	67.00	40.6	48.5	1092	2697	1008	2317	
	<i>Generalis</i>	12.5	19.6	478	794	43.09	66.10	40.4	48.3	1084	2625	988	2337	
	<i>Hyson 232 IT/H0</i>	12.1	20.5	463	831	43.90	69.14	39.1	50.0	1016	2871	917	2500	
	<i>P63/E113</i>	13.0	20.3	495	821	46.95	68.36	41.8	49.5	1162	2807	1060	2450	
	Average	12.5	19.9	477	804	45.24	66.93	40.3	48.6	1079	2691	985	2355	
	<i>Niagara</i>	11.3	20.8	449	829	43.22	69.12	38.0	47.3	971	2866	870	2543	
	<i>Hyson 158 IT</i>	11.3	19.2	448	766	43.09	63.88	37.9	47.6	966	2448	945	2165	
	<i>Hyson 280</i>	11.1	19.5	440	777	42.35	64.76	37.2	46.8	933	2516	872	2309	
	<i>Bella</i>	11.7	19.6	465	781	44.68	65.10	39.3	47.2	1038	2542	980	2221	
$N_{20}P_{30}$ Inoculation by bacteria-fixing (NFB)	<i>P64/E136</i>	11.9	19.9	473	792	45.46	66.01	40.0	47.7	1075	2614	982	2301	
	<i>Generalis</i>	11.4	20.4	453	815	43.60	67.91	38.3	49.0	989	2766	926	2420	
	<i>Hyson 232 IT/H0</i>	11.3	20.5	447	818	43.01	68.20	37.8	48.3	962	2790	877	2486	
	<i>P63/E113</i>	12.2	20.7	482	825	46.34	68.80	40.8	48.7	1117	2840	1021	2485	
Average		11.5	20.1	457	801	43.97	66.72	38.7	47.8	1005	2671	934	2366	

Continued from Table 3

1	2	3	4	5	6	7	8	9	10	11	12	13	14
<i>Niagara</i>	10.8	19.6	442	808	41.54	67.75	37.4	47.3	918	2336	822	2505	
<i>Hysun 58 IT</i>	11.6	18.5	475	762	44.62	63.92	39.7	47.8	1059	2435	963	2177	
<i>Hysun 380</i>	9.8	18.4	402	756	37.78	63.46	36.7	46.0	759	2400	765	2274	
<i>Bella</i>	11.4	18.7	464	769	43.66	64.50	47.3	1014	2479	941	2212		
<i>P64LE136</i>	11.5	18.7	470	772	44.18	64.77	39.4	47.0	1038	2500	939	2269	
<i>Generalis</i>	11.2	18.6	456	766	42.90	64.26	38.6	47.1	979	2461	896	2302	
<i>Hysun 322 IT Ho</i>	10.9	19.4	445	797	41.80	66.91	37.6	48.5	929	2668	838	2451	
<i>P63LE13</i>	11.9	19.2	484	793	45.52	66.49	40.2	48.2	1102	2635	987	2414	
Average	11.1	18.9	455	778	42.75	65.26	38.6	47.4	972	2538	894	2325	
<i>Niagara</i>	11.0	19.1	444	787	41.81	66.25	37.6	47.1	929	2608	809	2427	
<i>Hysun 58 IT</i>	11.4	18.6	462	765	43.47	64.34	39.1	47.6	1004	2459	917	2171	
<i>Hysun 280</i>	11.1	18.3	448	754	42.15	63.42	37.9	46.5	944	2390	834	2252	
<i>Bella</i>	11.5	18.8	463	773	43.59	65.08	39.2	47.2	1010	2517	919	2212	
<i>P64LE136</i>	11.4	18.8	462	773	43.47	65.06	39.1	47.2	1004	2515	903	2259	
<i>Generalis</i>	11.2	18.6	453	766	42.67	64.50	38.3	47.3	967	2472	871	2290	
<i>Hysun 322 IT Ho</i>	11.0	19.2	444	789	41.77	66.38	48.0	927	2618	818	2410		
<i>P63LE13</i>	11.6	19.0	468	783	44.03	65.90	39.6	47.8	1030	2580	933	2371	
Average	11.3	18.8	456	774	42.87	65.12	38.5	47.4	977	2519	875	2299	
<i>Niagara</i>	11.6	20.5	455	825	43.07	68.83	38.5	48.2	980	2839	882	2577	
<i>Hysun 58 IT</i>	11.8	19.5	465	787	44.01	65.69	39.3	48.8	1023	2586	982	2266	
<i>Hysun 380</i>	11.7	19.1	458	769	43.38	64.20	38.8	47.3	994	2470	909	2330	
<i>Bella</i>	12.2	19.7	479	794	45.33	66.27	40.5	48.3	1085	2632	1011	2302	
<i>P64LE136</i>	11.9	19.8	469	797	44.39	66.53	39.7	48.5	1041	2653	976	2361	
<i>Generalis</i>	12.0	19.5	471	787	44.63	65.64	39.9	48.3	1052	2582	965	2382	
<i>Hysun 322 IT Ho</i>	11.4	20.3	448	818	42.40	68.27	37.9	49.7	950	2794	879	2534	
<i>P63LE13</i>	12.4	20.0	486	807	46.02	67.30	41.1	49.0	1119	2714	1032	2475	
Average	11.9	19.8	466	798	44.15	66.59	39.4	48.5	1030	2657	954	2403	
<i>Niagara</i>	12.4	22.3	469	872	44.65	71.42	39.7	48.5	1047	3115	971	2802	
<i>Hysun 58 IT</i>	12.4	21.0	471	820	44.87	67.17	39.9	49.4	1058	2755	1064	2427	
<i>Hysun 280</i>	12.3	21.2	467	829	44.44	67.87	39.5	48.4	1037	2813	989	2580	
<i>Bella</i>	13.1	21.2	499	828	47.50	67.78	42.2	49.9	1185	2806	1125	2467	
<i>P64LE136</i>	12.6	21.5	478	837	45.53	68.57	40.5	48.9	1089	2871	1063	2549	
<i>Generalis</i>	12.7	21.4	482	834	45.88	68.25	40.8	49.2	1106	2894	1053	2594	
<i>Hysun 322 IT Ho</i>	12.2	22.1	462	864	43.98	70.73	39.1	50.5	1016	3055	969	2750	
<i>P63LE13</i>	13.5	22.0	511	858	48.68	70.27	42.4	50.2	1245	3015	1160	2707	
Average	12.6	21.6	480	843	45.69	69.01	40.5	49.4	1097	2908	1049	2610	
<i>Niagara</i>	12.2	21.6	468	845	44.29	69.85	39.5	48.3	1035	2952	943	2687	
<i>Hysun 58 IT</i>	12.5	20.5	479	803	45.40	66.38	40.5	49.3	1088	2666	1054	2352	
<i>Hysun 280</i>	12.1	20.7	464	812	43.98	67.12	39.3	48.3	1021	2726	959	2502	
<i>Bella</i>	12.9	20.9	492	818	46.59	67.62	41.6	48.7	1145	2767	1081	2413	
<i>P64LE136</i>	12.5	21.1	478	825	45.33	68.21	40.5	49.1	1084	2815	1037	2486	
<i>Generalis</i>	12.3	21.1	472	826	44.75	68.28	40.5	49.2	1057	2821	1006	2545	
<i>Hysun 322 IT Ho</i>	12.1	21.8	463	853	43.87	70.45	39.2	50.2	1016	3003	946	2685	
<i>P63LE13</i>	13.1	21.4	503	839	47.61	69.33	42.5	49.9	1196	2909	1111	2619	
Average	12.5	21.1	477	828	45.22	68.41	40.4	49.1	1080	2831	1017	2536	

Continued from Table 3

Table 4. Yield structure, oil content, biological and actual yield of sunflower hybrids on average by the studied variants (2023-2024)

Hybrid (Factor C)	Head diameter, cm		Number of seeds in the head		Weight of 1000 seeds, g		Oil content, %		Biological yield, kg/ha		Actual yield, kg/ha
	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	Location 1 (Factor A)	Location 2 (Factor A)	
<i>Niagara</i>	20.9	11.8	841	459	69.27	43.55	48.2	38.8	2915	1001	2641
<i>Hysun 158 IT</i>	19.8	12.2	787	474	65.47	44.92	48.6	40.0	2580	1064	2278
<i>Hysun 280</i>	19.8	11.6	791	452	65.60	42.85	47.4	38.4	2598	970	2408
<i>Bella</i>	20.0	12.4	796	482	66.19	45.69	48.3	40.7	2639	1102	2321
<i>P641/E136</i>	20.3	12.3	809	477	67.09	45.26	48.4	40.2	2719	1081	2410
<i>Generalis</i>	20.2	12.1	804	471	66.72	44.69	48.4	39.8	2687	1054	2448
<i>Hysun 232 IT/HO</i>	20.8	11.8	834	457	68.89	43.38	49.7	38.7	2876	993	2597
<i>P631/E13</i>	20.7	12.7	827	493	68.34	46.74	49.4	41.4	2828	1153	2550
<i>LSD_{0.5α}</i>	6.2	249			14.51				5.37	548	607
<i>LSD_{0.5α}</i>	0.8	11			1.62				0.68	14	18

The highest biological yield under optimal conditions was obtained on the variant with N₄₀P₆₀ in *Niagara* - 3260 kg/ha and *Hysun 232 IT H0* - 3243 kg/ha, and under limiting conditions in *P63LE113* - 1315 kg/ha. The highest actual yield under the optimal conditions was provided by the hybrid *Niagara* - 2955 kg/ha in the variant with poly-component inoculation and N₂₀P₃₀, and under limiting conditions in the hybrid *P63LE113* - 1282 kg/ha in the variant with N₄₀P₆₀.

Evaluating average indicators by the studied hybrids, the largest head diameter under the optimal conditions was formed by *Niagara* - 20.9 cm, *Hysun 232 IT H0* - 20.8 cm and *P63LE113* - 20.7 cm, and under limiting conditions by *P63LE113* - 12.7 cm (Table 4).

The largest number of seeds in the head and the biggest weight of 1000 seeds under the optimal conditions was formed by the hybrid *Niagara* - 841 seeds and 69.27 g, respectively, while under limiting conditions they were formed by the hybrid *P63LE113* - 493 seeds and 46.74 g. The highest oil content under optimal conditions was provided by the hybrids *Hysun 232 IT H0* - 49.7% and *P63LE113* - 49.4%, and under limiting conditions - by the hybrid *P63LE113* - 41.4%.

The highest biological and actual yields under the optimal conditions were obtained in the hybrid *Niagara* - 2915 kg/ha and 2641 kg/ha, respectively, slightly lower yields were harvested in the hybrid *Hysun 232 IT H0* - 2876 and 2597 kg/ha and the hybrid *P63LE113* - 2828 and 2550 kg/ha, while under limiting conditions in the hybrid *P63LE113* - 1153 and 1068 kg/ha, respectively.

CONCLUSIONS

Under the optimal conditions, the highest number of seeds in the head of 869 seeds, the weight of 1000 seeds of 70.44 g and the biological yield of 3060 kg/ha were obtained on the variant with N₄₀P₆₀, and the highest oil content of 50.3% and the actual yield of 2763 kg/ha were obtained on the variant with N₂₀P₃₀ and poly-component inoculation (nitrogen-fixing + phosphorus-solubilizing bacteria + arbuscular mycorrhizal fungi).

Under limiting conditions, the highest number of seeds in the head of 500 seeds, the oil content

of 42.3%, the biological and actual yields of 1173 and 1167 kg/ha, respectively, were obtained on the variant with N₄₀P₆₀, and the highest weight of 1000 seeds of 47.01 was obtained on the variant with N₂₀P₃₀ and poly-component inoculation (nitrogen-fixing + phosphorus-solubilizing bacteria + arbuscular mycorrhizal fungi).

Under the optimal conditions, the highest number of seeds in the head of 841 seeds, the weight of 1000 seeds of 69.27 g, the biological and actual yields of 2915 and 2641 kg/ha, respectively, were obtained in the hybrid *Niagara*, and the highest oil content - in the hybrids *Hysun 232 IT H0* and *P63LE113* - 49.7 and 49.4%, respectively.

Under the limiting conditions, the highest number of seeds in the head of 493 seeds, the weight of 1000 seeds of 46.74 g, the oil content of 41.4%, the biological and actual yields of 1153 and 1068 kg/ha, respectively, were obtained in the hybrid *P63LE113*.

REFERENCES

Bagyaraj, D.J., Sharma, M.P., & Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. *Curr Sci.*, 108. 1288–1293.

Daiss, N., Lobo, M.G., Socorro, R., Bruckner, U., Heller, J., & Gonzaler, M. (2008). The effect of three organic pre-harvest treatments on Swiss chard (*Beta vulgaris* L. var. *cycla* L.) quality. *Eur. Food Res. Technol.*, 226. 345–353.

Desai, S., Praveen-Kumar, G., Amalraj, L.D., Bagyaraj, D.J., & Ashwin, R. (2016). Exploiting PGPR and AMF biodiversity for plant health management. In: Singh, D.P., Singh, H.B., Prabha, R., editors. *Microbial inoculants in sustainable agricultural productivity*, 1. 145–160.

Enebe, M.C., & Babalola, O.O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. *Appl Microbiol Biotechnol.*, 102. 7821–35.

Gholinezhad, E., & Darvishzadeh, R. (2021). Influence of arbuscular mycorrhiza fungi and drought stress on fatty acids profile of sesame (*Sesamum indicum* L.). *F. Crop. Res.*, 262.108035.

Hashem, A., Kumar, A., Al-Dbass, A.M., Alqarawi, A.A., Al-Arjani, A.B.F., Singh, G., Farooq, M., & Abd-Allah, E.F. (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. *Saudi J. Biol. Sci.*, 26. 614–624.

Hladni, N. (2016). Present status and future prospects of global confectionery sunflower production. *Proceedings of 19-th International sunflower conference*, Edirne, Turkey. 47–60

Jamaluddin, B.D.J. (2019). Microbes for plant stress management. NIPA Publishers (Co-Published with USA, FL: CRC Press): NIPA Publishers.

Javaid, A. (2009). Growth, nodulation and yield of black gram [*Vigna mungo* (L.) Hepper] as influenced by biofertilizers and soil amendments. *Afr. J. Biotech.*, 8(21). 5711–5717.

Jyothi, E., & Bagyaraj, D.J. (2018). Microbial consortia developed for *Ocimum tenuiflorum* reduces application of chemical fertilizers by 50% under field conditions. *Med Plants Int J Phytomed Related Ind.*, 10. 138–144.

Kabir, A.H., Debnath, T., Das, U., Prity, S.A., Haque, A., Rahman, M.M., & Parvez, M.S. (2020). Arbuscular mycorrhizal fungi alleviate Fe deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. *Plant Physiol. Biochem.*, 150. 254–262.

Langeroodi, A.R.S., Mancinelli, R., & Radicetti, E. (2021). Contribution of biochar and arbuscular mycorrhizal fungi to sustainable cultivation of sunflower under semi-arid environment. *F. Crop. Res.*, 273. 108292.

Langeroodi, A.R.S., Osipitan, O.A., Radicetti, E., & Mancinelli, R. (2020). To what extent arbuscular mycorrhiza can protect chicory (*Cichorium intybus* L.) against drought stress. *Sci. Hortic.*, 263. 109109.

Leventis, G., Tsiknia, M., Feka, M., Ladikou, E.V., Papadakis, I.E., Chatzipavlidis, I., Papadopoulou, K., & Ehaliotis, C. (2021). Arbuscular mycorrhizal fungi enhance growth of tomato under normal and drought conditions, via different water regulation mechanisms. *Rhizosphere*, 19. 100394.

Malunjkar, B., Lokhande, R., & Chitodkar, S. (2024). The Significance of Sunflower in Ecology and Agriculture. *AgroScience Today*, 5(3). 0811–0813.

Mathimaran, N., Sharma, M.P., Mohan Raju, B., & Bagyaraj, D.J. (2017). Arbuscular mycorrhizal symbiosis and drought tolerance in crop plants. *Mycosphere*, 8. 361–376.

Meddich, A., Jaiti, F., Bourzik, W., Asli, A., & Hafidi, M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (*Phoenix dactylifera*). *Sci. Hortic.*, 192. 468–474.

Melikh, O.O., & Pasmenko, N.V. (2015). Current state and directions of development of the sunflower oil market in Ukraine. *Food Industry Economics*, 7(3). 15–20. (in Ukrainian with an abstract in English)

Miransari, M. (2011). Interactions between arbuscular mycorrhizal fungi and soil bacteria. *Appl Microbiol Biotechnol.*, 89. 917–930.

Muthukumar, T., Bagyaraj, D.J., & Ashwin, R. (2019). Arbuscular mycorrhizal fungi: role in alleviating salt stress in crop plants. In: Bagyaraj, D.J., Jamaluddin, editors. *Microbes for plant stress management*. New Delhi: NIPA Publishers (Co-Published with USA, FL: CRC Press), 221–244.

Nanjundappa, A., Bagyaraj, D.J., Saxena, A.K., Kumar, M., & Chakdar, H. (2019). Interaction between arbuscular mycorrhizal fungi and *Bacillus* spp. in soil enhancing growth of crop plants. *Fungal Biol Biotechnol*, 6. 23.

Redecker, D., Kodner, R., & Graham, L.E. (2000). Glomalean fungi from the Ordovician. *Science*, 289. 1920–1.

Ren, A.T., Zhu, Y., Chen, Y.L., Ren, H.X., Li, J.Y., Kay Abbott, L., & Xiong, C.Y. (2019). Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in *Zea mays* L. seedlings. *Environ. Exp. Bot.*, 167. 103824.

Rimington, W.R., Pressel, S., Duckett, J.G., Field, K.J., Read, D.J., & Bidartondo, M.I. (2018). Ancient plants with ancient fungi: liverworts associate with earlydivergent arbuscular mycorrhizal fungi. *Proc R Soc B*, 285. 20181600.

Singh, J.S., Pandey, V.C., & Singh, D.P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. *Agric Ecosystems Environ.*, 140. 339–353.

Thilagar, G., & Bagyaraj, D.J., & Rao, M.S. (2016). Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. *Sci Hort.*, 198. 27–35.

Tyshchenko, A., Tyshchenko, O., Piliarska, O., Marchenko, T., Fundirat, K., Sharri, V., & Konovalova, V. (2023). Economic efficiency of growing alfalfa for seeds by inoculation with bacterial preparations. *Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development*, 23(4). 871–878.

Tyshchenko, O., Tyshchenko, A., Piliarska, O., Biliaeva, I., Kuts, H., Lykhovyd, P., & Halchenko, N. (2020). Seed productivity of alfalfa varieties depending on the conditions of humidification and growth regulators in the Southern Steppe of Ukraine. *Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development*, 20(4). 551–562.

Vozhehova, R., Tyshchenko, A., Tyshchenko, O., Piliarska, O., Konovalova, V., Sharri, V., & Fundirat, K. (2022). Economic feasibility of application of bacterial and fungal drugs on seed-used alfalfa. *Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development*, 22(4). 827–834.

Zarabi, M., Alahdadi, I., Akbari, G.A., & Akbari, G.A. (2011). A study on the effects of different biofertilizer combinations on yield, its components and growth indices of corn (*Zea mays* L.) under drought stress conditions. *Afr. J. Agric. Res.*, 6(3). 681–685.