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Abstract

The study aimed to establish the critical salinity dose that can be tolerated by 16 wheat varieties from Romania under
controlled conditions. The tested varieties were Alex, Andrada, Bezostaia, Boema, Ariesan, Ciprian, Esential, Faur,
Glosa, Granny, Fundulea, Miranda, Otilia, Padureni, Taisa and Transilvania. Critical salinity levels (mM NaCl) were
tested respectively D1-100, D2-125, D3-150; D4-175; D5-200; D6-225; D7-250; and control (C) with distilled water.
The assessment was made according to first and second principal growth stage on BBCH scale (Biologische
Bundesanstalt, Bundessortenamt und CHemische Industrie) and the following parameters were calculated: germination
percentage (GP), germination index (Gl), total germinated seeds (TGS) and relative salt injury rate (RSIR). After 7
days, at 250 mM NaCl, the wheat varieties reached overall the maximum developmental stage of BBCH 07. Lower RSIR
was obtained by Andrada variety a result of an increased salinity resistance, while Taisa, Transilvania, and Padureni
proved lower resistance to stress, marked by increased RSIR coefficient. Germination standard parameters highlighted

the critical salinity thresholds between 225-250 mM NaCl with different resistance threshold between varieties.
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INTRODUCTION

Soil salinity is an abiotic stress affecting a
significant proportion of agricultural cropland
worldwide (Nehra et al.,, 2024). While the
Orient is facing already the harmful effects of
salinity (Zaman et al., 2018) and researchers
are looking for strategies to adapt and improve
plants in the presence of this stressor (Fita et
al., 2015), the European continent is facing an
expansion of salinization (Daliakopoulos et al.,
2016). These worrying aspects  sets
considerable focus on soil health (Mustafa et
al., 2019). Soil health is a concept of real
interest (Panagos et al., 2024), as it is an
essential and fundamental element in achieving
the Sustainable Development Goals (SDGs) of
the Sustainable Development Agenda for 2030
adopted by the United Nations (Head et al.,
2020). Achieving and maintaining soil health is
of high interest, particularly for the second
Sustainable Development Goal (SDG 2) of
ending global hunger (Lal et al., 2021). By
focusing on soil health, the healthy lives and
well-being of the population (SDG 3) can be
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enhanced (Howden-Chapman et al., 2017).
Additionally, soil health is closely linked to the
sixth SDG which aims to ensure clean water
sources. (Bonfante et al., 2020) Indirectly,
maintaining soil quality supports SDG 12,
which targets responsible consumption and
production, as well as SDGs 13 and 15, which
focus on climate action and the conservation of
terrestrial ecosystems (Mikhailova et al., 2023).
Achieving soil health ultimately contributes to
SDG 8 and SDG 1 by promoting productive
agriculture and  generating  economic
opportunities through employment (Visser et
al., 2019).

Salinity effects, on both soil health and as a
stress for plants, pose a significant threat to
agricultural yields and global food security. In
plant organisms, salinity effect is first felt by
the osmotic stress onset caused by the altered
osmotic potential of soil solution (Soni et al.,
2023). This abiotic stress affects all the plants
phenological stages (Okon, 2019), but the most
sensitive of these are germination and anthesis
(El Sabagh et al., 2021), while leaves
senescence can set in prematurely (Allu et al.,



2014). At the same time, salt stress induces an
ionic imbalance (Hualpa-Ramirez et al., 2024),
affects photosynthesis (Mahavar et al., 2024),
and leads to a reduction in biomass
accumulation (Huanhe et al., 2024). All these
aspects are reflected in low crop productivity
and production, which in the context of climate
change and growing population is a real threat
to the global food security (van den Burg et al.,
2024). The energy source from the daily diet is
based on carbohydrate intake (Jequier, 1994).
The main sources of carbohydrates and fibers
are cereals (McKevith, 2004), among which
wheat Triticum aestivum L., through its by-
products, is a favourite among cultivated
species (Kumar et al., 2011). Global wheat
production recorded in 2022/2023 exceeded
800 million tons, but forecasts for 2023/2024
and 2024/2025 predict declines (FAO, 2024).
Wheat yield varies slightly from year to year
depending on ecophysiological conditions
(Huzsvai et al., 2022). Under salinity
conditions, wheat plants have diverse responses
depending on the salinity concentration and the
stress exposure time (Negrdo et al., 2017).
Wheat seed germination is delayed and shoot
growth and development are affected by the
stressor (Akbarimoghaddam et al., 2011).
Germination is a phenological stage highly
sensitive to ecophysiological conditions. Saline
stress, depending on the concentration, can
inhibit the process and even delay it by the
onset of water stress and ion toxicity (EI
Sabagh et al.,, 2021). Plant height also
decreases when wheat is subjected to
successive saline treatments (Kandil et al.,
2012). Biomass accumulation is also influenced
by the low photosynthetic rate caused by
prolonged exposure to stress (Paul et al., 2019).
Both underground and aboveground organs are
affected by a decrease in root biomass and leaf
biomass, which ultimately influence crop
production  (Chourasia et al., 2022).
Considering all these aspects, the study of
wheat physiological processes in response to
salinity is of real interest.

The study aimed to establish the maximum
salinity dose that can be tolerated by 16 wheat
varieties during germination and early BBCH

stages under controlled conditions. The
objectives were to conduct daily monitoring of
the germination process, calculate the
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germination percentage and index, assess the
impact of salinity stress following relative salt
injury rate based on responses of 16 wheat
varieties to eight increasing doses.

MATERIALS AND METHODS

The experiment was set up on February 5%,
2024, in the Plant Physiology Department
research laboratory of USAMYV Cluj-Napoca.
The plant material was represented by a
collection of 16 wheat Triticum aestivum L.
varieties from the Agricultural Research and
Development Station (ARDS) Turda. The 16
varieties were Alex, Andrada, Bezostaia,
Boema, Ariesan, Ciprian, Esential, Faur, Glosa,
Granny, Fundulea, Miranda, Otilia, Padureni,
Taisa and Transilvania. For each variety, 20
seeds per replication were tested in 4 replicates.
Each variety was subjected to a salt stress
gradient, with seven salinity doses (D1 - 100
mM NaCl, D> - 125 mM NaCl, D3 - 150 mM
NaCl; D4 - 175 mM NaCl; Ds - 200 mM NaCl;
Ds - 225 mM NaCl; D7 - 250 mM NaCl; the
results were compared to a control (C) with
water.

Experimental conditions were daily monitored,
both humidity, temperature, and photoperiod.
The average humidity and temperature
recorded for the entire experiment were
31.79£0.71%  and  23.50+0.19°C.  The
photoperiod consisted of 11 hours of daylight
and 13 hours of darkness. Setting up the
experiment involved preparing the seven saline
solutions using a high-precision balance. The
germination process was carried out in
transparent polystyrene Petri dishes (Alom et
al., 2016) with a diameter of 9 cm. On the
bottom of these plates were placed three 70%
cotton disks of 6 cm diameter. The three pads
were soaked in 25 ml of water or solution
corresponding to the saline dose applied.
Subsequently, the 20 seeds of each variant were
applied on the wet layer. A volume of 3.5 mL
of the dose corresponding to each variant was
applied every two days. The germination
process was monitored during the experimental
period.

Germination percentage (GP), germination
index (GI), total germinated seeds (TGS) and
relative salt injury rate (RSIR) (Yohannes et al.,
2020) were determined in the defining days, i.e.



on the fourth when the seeds reached mean
germination time (Duda et al, 2003) and
seventh day when the process ended (Woku et
al., 2016). These parameters were calculated
using the formulas:

NUMBER OF GERMINATED SEEDS

GP = X 100
TOTAL NUMBER OF TESTED SEEDS
GI = DAY AFTER SOWINGXNUMBER OF GERMINATED SEEDS
- TOTAL NUMBER OF TESTED SEEDS
GP(control) — GP(saline dose)
RSIR = x 100

GP(control)

Relative salt injury rate (RSIR) is a parameter
that can give details on how salt stress
intervenes in the germination process, relating
each variant to the performance recorded in the
control. All data were recorded in synthetic
tables, where the red or dark blue color in each
cell indicates the direction of treatment effects.
The negative value (marked in red) of the RSIR
is associated with a positive effect induced by
the application of the dose. In contrast, high
positive values (marked in dark blue) indicate a
strong negative impact of the doses on the
varieties.

The germination percentage (GP) (Kandil et al.,
2012) is directly influenced by and related to
the total germinated seeds (TGS), while the
germination index (GI) (Yohannes et al., 2020)
depends on the assessment day and also on the
TGS. In this way, the dependence relationship
between the parameters is evident through the
distribution of the recorded values and mirrors
a quantitative analysis of the germination
process. All the values were then introduced
into a database. Mean values and standard
errors were obtained after performing the
analyse of variance test using the statistical
LSD test analysis with the software RStudio (R
Core Team, 2020), based on “psych” (Corcoz
et al., 2022; Revelle, 2017; Stoian et al., 2022)
and “agricolae” (de Mendiburu, 2019; Stoian et
al., 2016) packages. Mean values for all the
parameters were then processed using
conditional formatting for highlighting lower-
higher values. The best performances were
marked with the dark red, while the lower
values with dark blue. The wheat seed
germination and leaf development noted on
BBCH growth scale (BBCH Working Group,
2001).
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RESULTS AND DISCUSSIONS

Germination parameters-GP, GI and TGS
The GP, GI and TGS gradually decreased with
the seven saline stress doses application.
However, this aspect outlined in most of the
varieties shows some exceptions on the fourth
day of germination. These atypical aspects
were outlined in the Miranda variety, which
reached maximum of these three parameters at
C (control), D1 (100 mM NaCl) and even at D5
(200 mM NaCl) (Figure 1). Similarly, Taisa
showed same trends at C and D4 (175 mM
NaCl), Otilia and Transilvania at D3 (150 mM
NaCl) and Padureni at D2 (125 mM NaCl) and
D3. The two doses, D1 and D2, also stimulated
the germination of the wheat varieties Andrada
and Alex. However, the presence of salt stress
did not significantly affect the germination
process of Otilia and Taisa. Another interesting
aspect is outlined for the varieties Bezostaia,
Boema, Esential, Glosa, Granny and Miranda,
where the three parameters were significantly
reduced only when exposed to the 250 mM
NaCl dose. On the other hand, all the other
varieties exhibited a significantly lower
performance with the gradual increase of the
salt doses. Overall, all cultivars reached at least
the GP 95% saline treatment dose. A share of
37.5% from the 16 varieties, Ariesan, Ciprian,
Miranda, Otilia, Taisa and Transilvania showed
the most uneven GP distributions among the
seven treatment doses. It is possible that this
aspect outlines the tolerance of each variety to
a certain key dose which has a stimulating
effect on the process. The low tolerance of
Padureni and Esential wheat observed in the
fourth day is indicated by the fact that they only
reach a GP higher than 95% at C and DI.
Moreover, the application of higher doses over
D4 gradually decrease the parameters analyzed
in the case of Padureni. A lower share of 12.5%
from overall varieties, Glosa and Granny,
reached a germination percentage higher than
95% only up to D2.

The degree of tolerance, as indicated by the
parameter values, increased at D3 for Andrada
and Fundulea, and at D4 for Bezostaia and
Faur. The most tolerant varieties, after
analyzing the values, were Alex and Boema,
representing the wheat seeds that registered GP
higher than 95% up to the fifth dose of salt



stress. The germination advancement on the
fourth day is influenced not only by the salinity
stress applied (Maas and Poss, 1989) but also
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by the genetic tolerance inherent (Amro et al.,
2022) to each wheat variety.
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Figure 1. Mean values and the least significant difference for germination percentage (GP), germination index (GI), and
total germinated seeds (TGS) assessed in the fourth day of the germination of all the sixteen wheat varieties subjected to
control (C), D1-100 mM NacCl, D2-125 mM NaCl, D3-150 mM NaCl, D4-175 mM NacCl, D5-200 Mm NacCl, D6-225
mM NaCl and D7- 250 mM NaCl. ANOVA: Alex (F=14.06; p<0.001), Andrada (F=15.57; p<0.001); Bezostaia
(F=15.99; p<0.001); Boema (F=6.42; p<0.05); Ariesan (F=10.85; p<0.005); Ciprian (F=24.92; p<0.001); Esential
(F=14.82; p<0.001); Faur (F=13.05; p=0.001); Glosa (F=12.94; p=0.001); Granny (F=5.54; p<0.05); Fundulea
(F=30.39; p<0.001); Miranda (F=4.46; p<0.05); Otilia (F=0.52; p<0.5); Padureni (F=17.89; p<0.001); Taisa (F=1.67;
p<0.5); Transilvania (F=7.29; p<0.05)

Conducting the experiment up to the seventh
day did not lead to major differences in the
values distribution of the three parameters, but
about 56% of the varieties did not record
significant decreases in their values with
increasing salt doses (Figure 2). This may
indicate a tendency for Alex, Andrada, Glosa,
Bezostaia, Granny, Fundulea, Otilia, Taisa and
Transilvania to adapt to the treatments applied.
Some of the wvarieties respectively Alex,
Boema, Esential, Faur, Padureni and
Transilvania had a more successful germination
process compared with the control, in some of
the variants, with a maximum recorded in the
100-200 mM NaCl concentration range. The
general trend was to record the minimum at the
most concentrated saline solution, D7 (250 mM

NaCl), an aspect characteristic to about 69% of
the varieties. Two of them, respectively Glosa
and Fundulea performed minimally both below
the highest dose and below D3 while Taisa
performed weekly below D5.

The variability outlined by the recorded results
suggests that the germination process
progression, associated with  germination
percentage (GP), fluctuates in response to both
saline dose and wheat variety (Pastuszak et al.,
2022). Certain studies indicate that germination
can be initiated even at 300 mM, which
accounts for the trends observed in several
varieties. However, subsequent development on
the BBCH scale would no longer be feasible
due to the adverse effects on cell division
(Munns and James, 2003).
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Figure 2. Mean values and the least significant difference for germination percentage (GP), germination index (GI), and

total germinated seeds (TGS) assessed in the seventh day of the germination of all the sixteen wheat varieties subjected

to control (C), D1-100 mM NaCl, D2-125 mM NaCl, D3-150 mM NaCl, D4-175 mM NaCl, D5-200 Mm NacCl, D6-225

mM NaCl and D7- 250 mM NaCl. ANOVA: Alex (F=0.78; p=0.385), Andrada (F=2.82; p=0.103); Bezostaia (F=0.86;
p=0.360); Boema (F=6.63; p<0.05); Ariesan (F=11.43; p<0.005); Ciprian (F=13.05; p=0.001); Esential (F=12.22;
p=0.001); Faur (F=3.75; p<0.1); Glosa (F=2.95; p<0.1); Granny (F=0.33; p=0.572); Fundulea (F=2.62; p=0.116);

Miranda (F=9.93; p<0.005); Otilia (F=2.36; p=0.135); Padureni (F=15.45; p<0.001); Taisa (F=3.10; p<0.1);
Transilvania (F=7.18; p<0.05)

The Relative Salt Injury Rate assessment

The parameter performance RSIR varies with
the wheat variety, but also with the applied
saline dose. Plants salt injury mechanism is
complex and influences plant growth and
development throughout their lifespan by
disrupting various processes starting with
germination inhibition (Hao et al.,, 2021)
(Figure 3). The determined value of the
parameter also varies with the time exposure to
salt stress and the degree of seedling
development at the time of measurement. After
analysing the data, the impact of salt stress is
stronger on the fourth day and tends to decrease
with the time and the development of the
seedlings. The Andrada variety shows the most
interesting aspect, i.e. the plants seem to have
an equal or lower RSIR compared to the
control up to and including D4, on day 4. On
contrast, longer exposure (day 7) to stress
decreases RSIR under all saline doses. This
may be associated with an adaptation of the
plants to the tested doses. At the same time,

another interesting aspect was outlined in the
varieties Ariesan, Boema and Faur, as well as
in the wheat variety Otilia, where D1 had a
positive effect, reducing the RSIR both on the
fourth day and especially on the seventh day.
The outlined aspects highlight a temporal
adaptation of certain wheat varieties to certain
saline doses. This is due to the wheat plants
adaptability through various mechanisms that
operate throughout the entire plant organism,
starting at cellular level (El Sabagh et al.,
2021). A totally opposite aspect was observed
at Alex, Bezostaia, Ciprian, Esential and
Fundulea, where under DI, the three days’
transition increased the RSIR. This shows that,
although initially the application of the dose
may be stimulating, the effect is diminished to
approximately equal or lower performances
compared with the control. The RSIR is also
obviously stronger in Glosa, Granny and Taisa
varieties. RSIR evolution indicates Andrada as
the most tolerant wheat in the tested germplasm
collection.
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Figure 3. Mean values of relative salt injury rates (RSIR) assessed in the fourth and the seventh day of the germination
of all the sixteen wheat varieties subjected to control (C), D1-100 mM NacCl, D2-125 mM NacCl, D3-150 mM NaCl, D4-
175 mM NaCl, D5-200 Mm NaCl, D6-225 mM NaCl and D7-250 mM NaCl

The impact of on BBCH
development

The plant development on the BBCH scale was
influenced by the saline doses. The trend
outlined on the fourth day reveals that
increasing  salt treatment concentrations
delayed the seedling growth process. More than
half of the varieties reached the highest level of
BBCH development, respectively BBCH 10
(Figure 4). Lower rates were observed for the
varieties Alex, Andrada, Bezostaia, Boema,
Esential, Faur and Miranda. The development
up to BBCH 09 under the influence of D4 dose
reflects an increased tolerance of Taisa and
Padureni varieties compared to the variants at
all the other doses. Transilvania, Otilia,
Fundulea, Granny, Ciprian and Boema were
ranked with lower tolerance than the two
varieties. An interesting aspect is outlined in
Bezostaia, where doses more concentrated than
D3 gradually decrease the growth in the fourth

salinity
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day assessment. Most seedlings of this variety
range between BBCH 05 and BBCH 07.
Another interesting aspect was evidenced in
Alex, where a few seedlings were still in
BBCH 03 on day 4, at the doses D4, D6 and
D7. This indicates a sensitivity of the
germination process to high saline doses for
this variety. These aspects highlighted the
sensitivity of early growth and developmental
stages, as defined by the BBCH scale, to salt
stress. This sensitivity arises from the osmotic
stress and toxicity induced by saline
concentrations (El Sabagh et al., 2021), which
adversely affect cell division and elongation
processes  (Terletskaya et al, 2020),
particularly during the early growth phases
(Baranova and Gulevich, 2021).

The saline doses effect on seedling growth and
development is also evident on the seventh day
of germination (Figure 5).
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Figure 4. Percentage distribution of BBCH growth stages in the fourth day of germination for all the sixteen wheat
varieties subjected to control (C), D1-100 mM NaCl, D2-125 mM NaCl, D3-150 mM NaCl, D4-175 mM NacCl, D5-200
Mm NaCl, D6-225 mM NaCl and D7-250 mM NaC

The most developed growth was seen in the
control plants of the Glosa, Granny, Fundulea,
Otilia, Padureni, Taisa and Transilvania
varieties, which already had an unfolded leaf.
The tolerance of Taisa wheat to salinity was
highlighted, at doses from DI to D4, showed
the same degree of development, with seedlings
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in BBCH 10. Transilvania, Padureni and
Fundulea, varieties whose seedlings, although
performing better than other varieties, grew up
to BBCH 10 when tested at D3 and lower
doses, were significantly less tolerant than
Taisa.
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Figure 5. Percentage distribution of BBCH growth stages in the seventh day of germination for all the sixteen wheat

varieties subjected to control (C), D1-100 mM NaCl, D2-125 mM NacCl, D3-150 mM NaCl, D4-175 mM NacCl, D5-200
Mm NaCl, D6-225 mM NaCl and D7-250 mM NaC

Among the growth delayed seedlings were
those of the Alex and Bezostaia varieties,
which under higher concentrations of D3
reached maximum BBCH 07. With even lower
performance than these, Andrada and Boema

reached maximum BBCH 07 at higher
concentrations than D4. The high dose of salt
stress affects cell division and growth, which is
why germination is delayed or even stopped (El
Sabagh et al., 2021).
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CONCLUSIONS

By monitoring and evaluating germination
through the analyzed parameters, it was
observed that the earlier stage of germination
was more sensitive to salt stress. Additionally,
the temporal evolution of the parameters is
associated with a tendency for seedlings to
adapt to lower saline concentrations in most of
the tested varieties.

The RSIR evaluation at two distinct stages of
germination revealed an adaptive response over
time to saline stress, reflected in the reduced
impact. Furthermore, the Andrada wheat
variety performed well under saline conditions,
while Taisa, Transilvania, and Padureni
experienced negative effects in the presence of
saline stress, marked by an increase in RSIR.
The progression along the BBCH scale was
significantly influenced by the saline stress
application, particularly at higher
concentrations. Prolonged exposure to the
highest saline concentration until the seventh
day of germination indicated a trend of reduced
tolerance across all varieties, with most
achieving a maximum development stage of
only BBCHO7.
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