
309

 
IMAGING ANALYSIS IN CORN CROP EVALUATION UNDER HYDRIC 

STRESS CONDITION 
 

Ciprian BUZNA1, Marinel Nicolae HORABLAGA1, 2, Florin SALA1, 2 

 
1Agricultural Research and Development Station Lovrin, Lovrin, 307250, Romania 

2University of Life Sciences “King Mihai I” from Timisoara,  
119 Calea Aradului, 300645, Timisoara, Romania 

 
Corresponding author email: florin_sala@usvt.ro 

 
Abstract 
 
Imaging analysis (UAV images) was used to evaluate a corn crop under hydric stress conditions. From the analysis of 
the series of images (June 29 – T1, July 20 – T2, year 2022) the values of the RGB parameters resulted. Suplementary 
the luminance (Lum), normalized values (rgb), values in the HSB system, and INT, NDI and DGCI indices, were 
determined. The correlation analysis identified 18 very strong correlations between the parameters considered at the 
time of T1, and 10 very strong correlations at the time of T2. The PCA analysis led to the classification of the 
components: seven components in PC1 (R = -9.93 the highest value) and three components in PC2 (Lum = 0.970 the 
highest value) at the time of T1; four components in PC1 (r = -0.990 the highest value) and four components in PC2 
(Lum = 0.949 the highest value) at time T2. The differences between the series of parameters, at the moments T1 and 
T2, were confirmed by values U = 18, p = 0.017 in the case of parameter G; U = 10, p = 0.0028 in the case of the B 
parameter; t = 9.4202, p < 0.01 in the case of NDI; t = 9.2066, p<0.001, U = 1, p < 0.001 in the case of INT; t = 
9.3176, p < 0.001 in the case of DGCI; t = 7.5581, p < 0.001, U = 3, p < 0.001 in the case of Lum. 
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INTRODUCTION 
 
Farmers are currently faced with an 
accumulation of factors that affect the yield of 
agricultural crops, and the crops stressors, 
including water stress, represents a challenge 
that requires immediate solutions (Ahmad et 
al., 2021; Weng, 2023). 
Improved genotypes are present in agricultural 
practice, and new ones, with indices of 
productivity, quality and tolerance to stress 
factors, adapted for current and prospective 
agricultural technologies, are in breeding 
programs and laboratories, and are to be 
promoted and cultivated. At the same time, a 
series of relevant parameters and physiological 
indices that reflect the response of the plants to 
water stress were identified. They are in the 
attention of the breeding programs and of the 
agricultural pact for early interventions with 
irrigation measures (Chen et al., 2014). 
There are concerns for the future development 
of genotypes with drought resistance in crop 
plants, and studies to evaluate the response of 
plants to water stress (Ismael et al., 2022; Kim 
et al., 2023; Quagliata et al., 2023). 

Considering the increase of the global water 
deficit, more and more effective methods for 
assessing the water stress on crop plants 
associated with cost modeling, and the early 
programming of irrigations have proven to be 
necessary (Zhou et al., 2021). Thus, the 
methods based on image analysis (UAV)  
become more and more present in agricultural 
practice, accessible to farmers, being based on 
specific indices that facilitate effective analyzes 
and prognoses, under the cost-benefit aspect. 
The traditional methods of monitoring crops 
and water deficit have been replaced over time 
with alternative methods based on image 
analysis associated and combined with 
automatic learning applications, with 
calculation algorithms and prediction models 
for the purpose of early estimation of water 
stress and effective intervention decisions 
(Kamarudin et al., 2022). 
In order to identify early the response of plants 
to water stress and the decision of some 
irrigation works, the phenotyping of plants, of 
agricultural crops, is an increasingly promoted 
practice (Al-Tamimi et al., 2022). 
Numerous studies have been carried out that 
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addressed image analysis technologies suitable 
for plant phenotyping (sensors, spectra, 
resolutions, etc.) but also aspects of 
information processing and analysis, such as 
new algorithms (Das Choudhury, 2023). 
The monitoring of agricultural crops and the 
early detection (in real time) of crop water 
stress through techniques based on remote 
sensing, which evaluate through specific 
techniques (spectral, multispectral information) 
evapotranspiration, chlorophyll florescence, as 
well as other representative indicators, offer a 
series of benefits (Weng, 2023; Karmakar et 
al., 2024). 
Some studies analyzed the performance of 
water stress estimation in agricultural crops 
(e.g. corn) based on UAV images in relation to 
the image resolution, and proposed water stress 
indicators (Zhang et al., 2022). 
A large base of indices were developed over 
time for the study of plants and agricultural 
crops based on satellite images, but with the 
promotion of UAV techniques, specific indices 
were developed for this technique in the study 
of water stress (Hoffmann et al., 2016). 
For the analysis and evaluation of the water 
stress of plants and crops, phenotyping 
methods based on free applications (e.g. 
Canopeo) were tested, due to accessibility and 
financial considerations (Kim et al., 2022). The 
authors of the study communicated positive 
correlations between vegetative parameters, 
elements of productivity (e.g. the number of 
nodes in soybeans), with parameters resulting 
from imaging analysis. 
The present study is using imaging analysis 
techniques (UAV images) to obtain color 
parameters (RGB) and specific indices (NDI, 
INT, DGCI) and appropriate mathematical and 
statistical analysis methods, to identify the 
differences in the evolution of corn crop in 
water stress conditions. 
 
MATERIALS AND METHODS 
 
The study was conducted at Agricultural 
Research and Development Station (ARDS) 
Lovrin, in the pedoclimatic conditions specific 
to the Western Plain, Romania. 
The corn commercial hybrid (CH), was grown 
on a chernozem soil, in a non-irrigated crop 
system. In the context of climate change, the 

year 2022 was characterized by a major 
precipitation deficit, with high temperatures 
and prolonged heat. Thus, the plants were 
affected by drought and the purpose of the 
study was to characterize the corn crop based 
on UAV images, at two different times, at an 
interval of 30 days, between July and August, 
2022. Series of ten aerial images (UAV) were 
taken at each time (T1, and T2), at different 
heights from the crop level. The images were 
image analyzed (Rasband, 1997) and the 
spectral information in the RGB system was 
obtained. Starting from the RGB data, the 
normalized values (rgb), equation (1), Lee and 
Lee (2013) and the values of the color 
parameters in the HSB system were calculated. 
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Additionally, specific vegetation 
characterization indices were calculated, 
respectively NDI (Normalized Difference 
Indices), equation (2), INT (Intensity), equation 
(3), and DGCI (Dark Green Color Index), 
equation (4) (Ahmad and Reid, 1996; Karcher 
and Richardson, 2003; Mao et al., 2003; Rorie 
et al., 2011). 
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The data series for determined parameters were 
analyzed comparatively, at the two moments of 
determination (T1, T2).  
PCA analysis was used to rank the parameters 
by components. In order to point out the 
differences between the data series, specific 
mathematical and statistical tests were used. 
Correlation analysis between parameters, data 
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series at the two moments (T1, T2) was used to 
analyze the evolution of the interdependence 
between parameters, associated with the state 
of the crop. The results of the mathematical and 
statistical analyzes were interpreted in relation 
to the statistical safety thresholds (Hammer et 
al., 2001; JASP, 2022). 
 
RESULTS AND DISCUSSIONS 
 
The series of UAV digital images, taken at the 
two study moments (T1, T2) were analyzed and 
the values of the RGB color parameters were 

obtained. Starting from this basic spectral 
information, the luminance values (Lum), the 
normalized values (rgb) and the values in the 
HSB color system were determined. Based on 
these parameters, the INT, NDI and DGCI 
indexes were calculated. The data series for the 
parameters considered in the study, resulting 
from the analysis of the images and through 
calculations, are presented in Table 1 (moment 
T1) and Table 2 (moment T2). The ANOVA 
test confirmed the reliability of the data and the 
presence of variance in the data set (Table 3).

 
Table 1. Statistical values of the parameters determined at time T1 

Statistical 
Parameters 

RGB color parameter Calculated indices Luminance 

R-T1 G-T1 B-T1 NDI-T1 INT-T1 DGCI-T1 Lum-T1 

N 10 10 10 10 10 10 10 

Min. 82.74 86.73 39.26 -0.202 70.993 0.358 32.00 

Max. 90.20 93.02 61.40 -0.092 79.053 0.539 34.00 

Sum 873.38 882.70 426.27 -1.108 727.450 3.889 326.00 

Mean 87.34 88.27 42.63 -0.111 72.745 0.389 32.60 

Std. error 0.70 0.61 2.10 0.010 0.740 0.017 0.22 

Variance 4.94095 3.67527 44.25707 0.00108 5.47311 0.00295 0.48889 

Stand. Dev. 2.223 1.917 6.653 0.033 2.339 0.054 0.699 

Median 87.550 87.565 40.635 -0.1014 71.8584 0.3733 32.500 

25 prcntil 86.098 86.905 40.010 -0.1116 71.4442 0.3608 32.00 

75 prcntil 89.170 89.185 41.665 -0.0937 73.0959 0.3933 33.00 

 
Table 2. Statistical values of the parameters determined at time T2 

Statistical 
Parameters 

RGB color parameters Calculated indices Luminance 

R-T2 G-T2 B-T2 NDI-T2 INT-T2 DGCI-T2 Lum-T2 

N 10 10 10 10 10 10 10 

Min. 103.53 82.05 42.62 -0.043 76.067 0.202 33.00 

Max. 113.88 98.75 48.72 0.015 85.837 0.263 38.00 

Sum 1111.07 904.66 465.50 0.002 827.077 2.201 361.00 

Mean 111.11 90.47 46.55 0.000 82.708 0.220 36.10 

Std. error 0.95 1.25 0.61 0.006 0.790 0.006 0.41 

Variance 9.12000 15.68347 3.70849 0.00031 6.23686 0.00033 1.65556 

Stand. Dev. 3.020 3.960 1.926 0.018 2.497 0.018 1.287 

Median 111.195 90.580 47.020 0.0053 83.2667 0.2150 36.000 

25 prcntil 110.428 90.028 45.163 -0.0070 82.7217 0.2081 36.000 

75 prcntil 113.525 90.898 48.030 0.0133 83.3909 0.2258 37.000 

 
Table 3. ANOVA Test 

Source of Variation SS Df MS F P-value F crit 

Between Groups 199758.8 6 33293.13 1020.0816 1.4E-108 4.013174 

Within Groups 4340.816 133 32.63772    

Total 204099.6 139     
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PCA analysis led to the classification of 
components: seven factors in PC1 (color 
parameter R, r = -9.93, highest value) and three 
factors in PC2 (Luminance, Lum, r = 0.970 
highest value) at T1 time (p < 0.001) (Table 4); 
four factors in PC1 (normalized value r, r =            
-0.990, highest value) and four factors in PC2 
(Luminance, Lum, r = 0.949 highest value) at 
time T2 (p<0.001) (Table 5). 
 

Table 4. Component Loadings (T1) 

Parameter PC1 PC2 Uniqueness 

R -0.993  0.012 

g 0.876  0.007 

DGCI 0.872  0.002 

NDI -0.868  0.000 

r -0.867  0.000 

b 0.849  0.008 

B 0.797  0.007 

Lum  0.970 0.045 

G  0.899 0.025 

INT  0.826 0.011 

Table 5. Component Loadings (T2) 

Parameter PC1 PC2 Uniqueness 

r -0.990  0.002 

DGCI 0.957  0.080 

NDI -0.952  0.037 

g 0.880  0.117 

Lum  0.949 0.028 

R  0.937 0.059 

INT  0.914 0.036 

G  0.826 0.021 

B   0.402 

b   0.508 

 
This analysis facilitated the grouping of 
determined parameters, as factors in the 
characterization of corn crop, by components, 
with the degree of involvement or 
representativeness of each factor. The 
characteristics of the components, at the two 
moments of determination (T1, T2), resulted 
based on the analysis, are presented in Table 6. 

 
Table 6. Component Characteristics 

Component 
Unrotated solution Rotated solution 

Eigenvalue Proportion 
var. Cumulative Sum Sq. 

Loadings 
Proportion 

var. Cumulative 

 Values for T1 moment 

Component 1 8.575 0.858 0.858 5.861 0.586 0.586 

Component 2 1.307 0.131 0.988 4.021 0.402 0.988 

 Values for T2 moment 

Component 1 5.987 0.599 0.599 4.923 0.492 0.492 

Component 2 2.723 0.272 0.871 3.787 0.379 0.871 

 
Between the average values of the parameters, 
at the two study moments (T1, T2), some diffe-
rences were identified, and the level of statis-
tical safety of the differences was analyzed. For 
this, specific mathematical analyzes were used.  
Based on the t-test (Equality of Means) and the 
Mann-Whitney test (Two-sample tests), the 
following values were obtained for the data 
series related to the considered parameters: U = 
18, p = 0.017 in the case of the G parameter;           
U = 10, p = 0.0028 in the case of parameter B;  
t = 9.4202, p<0.01 in the case of NDI;                  
t = 9.2066, p<0.001, U = 1, p<0.001 in the case 
of INT; t = 9.3176, p<0.001 in the case of 
DGCI; t = 7.5581, p<0.001, U = 3, p<0.001 in 
the case of Lum.  Starting from the differences 

recorded between the parameters at the two 
moments (T1 and T2), based on the One-
sample test, the analysis was made on the data 
series of each parameter at the moment T2, in 
relation to the average from the moment T1. 
Thus, according to the analysis, the values 
presented in Table 7 resulted. 
From the analysis of the resulting values based 
on the t test, it was found that the average 
values related to the data series of the R and B 
color parameters, of the calculated NDI, INT, 
DGCI indices, and respectively the Luminance 
values at the moment T2 showed statistically 
guaranteed differences (p<0.001) compared to 
the average of the same parameters, calculated 
at time T1. 
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Table 7. One-sample test results 
Statistical 
Parameters R-T2 G-T2 B-T2 NDI-T2 INT-T2 DGCI-T2 Lum-T2 

  t test 

Given mean: T1 87.34 88.27 42.63 -0.1110 72.7450 0.3890 32.60 

Sample mean: 108.95 90.27 46.19 -0.0099 81.8020 0.2355 35.78 

95% conf. interval: (103.76 114.13) (87.703 92.829) (44.732 47.655) (-0.035023  
0.01526) 

(79.232  
84.372) 

(0.19931  
0.2716) (34.698 36.866) 

Difference: 21.6060 1.9964 3.5636 0.1011 9.0570 0.1536 3.1818 

95% conf. interval: (16.422 26.791) (-0.56652 
4.5592) (2.1018 5.0254) (0.075977 

0.12626) (6.4868 11.627) (0.1174 0.18969) (2.0978 4.2658) 

t: 9.2854 1.7356 5.4319 8.9615 7.8517 -9.4660 6.5401 

p (same mean): 3.12E-06 0.11329 0.00029 4.30E-06 1.39E-05 2.62E-06 6.55E-05 

Significance of 
Means 

Means are 
significantly 

different 

Means are not 
significantly 

different 

Means are 
significantly 

different 

Means are 
significantly 

different 

Means are 
significantly 

different 

Means are 
significantly 

different 

Means are 
significantly 

different 

  Wilcoxon test 

Given median: T1 87.550 87.565 40.635 -0.1014 71.8584 0.3733 32.500 

Sample median: 111.120 90.390 47.000 0.0039 83.2100 0.2156 36.000 

W: 55 46 55 55 55 55 55 

Normal appr. z: 2.8031 1.8857 2.8031 2.8031 2.8031 2.8067 2.8710 

p (same median): 0.00506 0.05934 0.00506 0.00506 0.00506 0.00501 0.00409 

p (exact): 0.00195 0.06445 0.00195 0.00195 0.00195 0.00195 0.00195 

Significance of 
Medians 

Medians are 
significantly 

different 

Medians are not 
significantly 

different 

Medians are 
significantly 

different 

Medians are 
significantly 

different 

Medians are 
significantly 

different 

Medians are 
significantly 

different 

Medians are 
significantly 

different 

 
The exception was the color parameter G, for 
which the differences did not show statistical 
certainty (Table 7).  
The additional test applied (Wilcoxon test), 
confirmed the results of the t test, with the 
median values of the data series related to each 
parameter at the moment T2 that showed 
differences compared to the median values of 
the data series at time T1. The exception was 
the color parameter G (Table 7). 
Through the correlation analysis, the level of 
interdependence between the studied 
parameters was evaluated, at the two moments 
of determination (Figures 1 and 2).  
From the analysis of the correlation coefficient 
values, 18 very strong correlations (r>0.900) 
were identified between the parameters 
considered at the moment T1 and only 10 very 
strong correlations, at the time of T2.  
This shows the variation of the parameters and 
their interdependence, a fact that shows a 
significant level of change in the status of the 
plants, and the relationships between their 
description parameters, based on the UAV 
images. 
The obtained results pointed out that color 
parameters in the RGB system, calculated 

indices, and Luminance have shown the corn 
crop state of vegetation. The mathematical and 
statistical analysis tools have clearly detected, 
with statistical certainty, the differences at the 
two moments of determination. 
Using the analysis for the parameters position 
in the two components (PC1, PC2) and 
moments (T1 and T2), as factors associated 
with the state of the corn crop, captured in the 
UAV images, the existence of some parameters 
with a stable or variable position were 
identified. 
Stable parameters or factors, which were 
maintained in PC1 at the two moments of 
determination (T1 and T2) were r and g 
parameters (normalized values), and DGCI and 
NDI indices. Stable parameters or factors in 
PC2, at the two moments of determination (T1 
and T2), were the color parameter G, 
Luminance (Lum) and the INT index. 
The color variable parameter represented by R 
was identified both with negative action             
(r = -0.993) when was positioned in PC2 at 
time T1, and respectively with positive action 
(r = 0.937) at time T2 in PC2. So, the 
parameter R expressed sensitivity in relation to 
the state of the crop, and can be considered a 
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relevant parameter associated with water stress, 
both by changing the position between classes, 
the direction of action (positive in class PC1 at 
time T1 and negative in class PC2, at time T2) 

as well as by the very strong value of the effect 
(r = -0.991 in PC1, at time T1; r = 0.937 in PC2 
at time T2). 

 

 
Figure 1. The level of correlations between the analyzed parameters at the moment T1 

 

 
Figure 2. The level of correlations between the analyzed parameters at the moment T2 
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The normalized value g, was maintained in 
PC1 both at time T1 and at time T2. Also, the 
(positive) effect was maintained, as well as the 
level of action (r = 0.876 at T1 time; r = 0.880 
at T2 time). The normalized value r, as a factor 
in the PCA analysis, was maintained in PC1, 
both at the time T1 and at the time T2, with 
negative action (r = -0.867 at the time T1; r =          
-0.990 at the time T2). 
The DGCI index remained in PC1 at the two 
determination moments (T1 and T2), with 
positive action, strong at T1 (r = 0.872) and 
very strong at T2 (r = 0.957). The NDI index 
was also maintained in PC1 at both 
determination moments, with negative action, 
strong at T1 (r = -0.967) and very strong at T2 
(r = -0.952). 
Color parameters B and b (normalized value), 
present in PC1 at T1, with positive, strong and 
moderate action (r = 0.849 in the case of b; r = 
0.797 in the case of B), doesn’t belong into the 
classes PC1 or PC2 at time T2. The color 
parameter G, Luminance (Lum) and the INT 
index remained in the PC2 class, both at T1 and 
at T2. Luminance presented a positive, very 
strong action in both PC1 and PC2 (r = 0.970, 
respectively r = 0.949). The INT index showed 
positive action, strong in T1 (r = 0.826) and 
very strong in PC2 (r = 0.914). The color 
parameter G presented a strong positive action 
in both cases (r = 0.899 at T1; r = 0.826 at T2). 
The interest for the study of crops based on 
imaging analysis is very high, with the use of 
different databases in the form of images, 
remote sensing, aerial images (UAV) or 
terrestrial images. AbdulHussein and 
Mihalache (2021) evaluated the land condition 
based on specific soil and vegetation indices, 
through remote sensing and GIS techniques. 
Gulyaev et al. (2023) communicated the results 
of a study based on remote sensing techniques 
for cotton crop, and simulation models of plant 
growth dynamics. Sala et al. (2020) analyzed a 
wheat crop based on terrestrial images, to 
describe the variation of spectral information in 
relation to the image capture mode, and 
communicated variation models and correction 
coefficients in relation to the image acquisition 
conditions. Zhou et al. (2021) used the 
technique based on UAV images for the study 
of water stress, with advantages in cost 
modeling by planning irrigation at early times 

and reducing the effects associated with 
drought. Zhang et al. (2022) carried out a study 
to estimate water stress in corn based on UAV 
images, in relation to the resolution of the 
images, and based on the recorded results, the 
authors proposed a water stress indicator. The 
authors of the study considered as 
representative the excess of green, quantified 
based on the "average value of the Gaussian 
distribution index (MGDEXG)" which they 
proposed as a relevant index for the study. A 
series of indices, based on UAV images data, 
were generated over time by different studies 
(Hoffmann et al., 2016), and the fact that new 
indices are proposed, associated with methods, 
techniques, models for the analysis of UAV 
images, shows the increased interest in this 
direction of study, research and agricultural 
practices. 
 
CONCLUSIONS 
 
The data in the form of UAV images, spectral 
information in the RGB system, and specific 
calculated indices (NDI, INT, DGCI) facilitated 
the description of the maize crop, a commercial 
hybrid, under conditions of drought and water 
stress, at two moments with an interval of 30 
days. Multivariate analysis (PCA) led to the 
classification of factors and components, 
highlighting the direction of action and effect. 
The differentiated positioning of the factors in 
the two components (PC1, PC2) at the 
moments T1 and T2, facilitated the 
identification of the stable factors and the 
sensitive ones in relation to the state of the 
crop, captured in image data and spectral 
information.  
The parameter R expressed sensitivity in 
relation to the state of the crop, and can be 
considered a relevant parameter associated with 
water stress, both by changing the position 
between classes, the direction of action 
(positive in class PC1 at time T1 and negative 
in class PC2, at moment T2) as well as by the 
very strong value of the effect (r = -0.991 in 
PC1, at moment T1; r = 0.937 in PC2 at 
moment T2). Through appropriate 
mathematical analyzes (Two-sample tests, and 
One-sample tests) the data series were 
compared for each parameter, the differences 
between the data series (T2) and the average of 
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the data (T1) were analyzed and values that 
confirmed the differences under statistical 
safety conditions were obtained. There were 
also variations in the level of correlation 
between the parameters at the two moments of 
determination, with a weak level of correlation 
at the time of T2, a fact that confirms major 
changes at the crop level associated with 
vegetation conditions, respectively water stress. 
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