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Abstract  
 
In Romania 49.5% of the total soil surface have pH below 5.8 which represents a risk for aluminum toxicity and plants 
growth. Research carried out in the High Pitești Plain aimed to study exchangeable aluminum presence in cultivated 
soils in order to issue recommendations for acid soils liming. Soil samples collected from the first soil layer, down to 25 
cm depth, were analysed in the laboratory and the reaction, humus and available phosphorus and potassium contents, 
and cation exchange properties were determined. Out of 120 analysed samples 38 showed contents below the method’s 
detection limit. Relationships were drawn for the rest 82 of them between humus and available phosphorus and potassium 
on one hand and soil reaction and aluminum contents on the other to assess aluminum variability and its possible toxicity 
for plants. Low, very low, and extremely low aluminum quantities were found which means there is no immediate risk of 
soil acidification in the studied area from this point of view. Researches must be carried on though in other Romania 
agricultural land on acid soils.  
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INTRODUCTION  
 
This research is expected to determine the 
maximum aluminum concentration which exists 
in three different places in the Pitesti High Plain. 
The goal is that after determining the quantities 
of aluminum, concrete measures can be taken to 
increase agricultural productivity in this area.  
Aluminium is an element commonly occurring 
in nature, the third most abundant in the earth's 
crust after oxygen and silicon. It forms 
numerous mineral and organic complexes, 
characterised by different degrees of hydration. 
In soil, aluminum is mainly found in the mineral 
form as aluminosilicates and aluminum oxides 
and this aluminium is in stable inactive form. Al 
can be found as precipitates or in very minute 
quantities appearing in soluble forms such as 
conjugated organic and inorganic, and 
molecular ions (Al3+, AlOH2+, Al(OH)2+ and 
Al(OH)4–). Aqueous Al also forms inorganic 
complexes with F– and SO4

2–, the formation of 
which also varies with pH, the concentration of 
the inorganic ligands, ionic strength and 
temperature. It's easy transition from solid to 
liquid phase and high solubility in the acid 
environment are decisive factors for its 
important function in the environment (May & 

Nordstrom, 1991). Fragmentation and 
inhomogeneous territorial dispersion are the 
general characteristics of the agri-food sector in 
Argeș County. Integration into agri-food chains 
is difficult for small and medium-sized farmers 
looking for alternative solutions to increase land 
capacity. 
 

 
Map 1. Location of Argeș County in Romania  

(Tudor M. et al) 
 
We found in the area of Argeș County in the 
High Plains of Pitestilor, by analysing two areas 
near to Costești and one near Căldăraru, see Map 
1, small amounts of aluminum in soils. 
Comparing the results with the general ones 
from Table 1, the amount of exchangeable 
aluminum found is at a maximum of 1.09, so it 
is in the area of 0.9-2.0, that is, a small amount 

Scientific Papers. Series A. Agronomy, Vol. LXVII, No. 1, 2024
ISSN 2285-5785; ISSN CD-ROM 2285-5793; ISSN Online 2285-5807; ISSN-L 2285-5785



108

 
of aluminum. The present study demonstrated 
that differing in Al tolerance differed markedly 
in response to subsurface soil acidity. The 
results imply that Al toxicity was the major 
growth-limiting factor in the acidic subsurface 
soil. It was also evident that the effect of 
subsurface soil acidity was greater on root 
growth than on the above-ground growth. 
Therefore, decreased shoot growth and grain 
yield of Al-sensitive wheat in response to 
subsurface soil acidity had mainly resulted from 
the poor root growth. In the field the growth of 
wheat plants relies largely on water and 
nutrients in deep soil layers at the later growing 
stages in regions where rainfall is low and 
terminal drought is endemic. The poor root 
growth may exacerbate the subsurface soil 
acidity problem in these regions. Subsurface soil 
acidity with high levels of toxic aluminium (Al) 
restricts the yield of many crops throughout the 
world (Sumner et al., 1986) and is a major 
limiting factor in wheat production (Carr et al., 
1994). Subsurface soil acidity impairs root 
growth of sensitive crops and hence may reduce 
nutrient acquisition and plant access to water 
reserves in the subsurface soil layer (e.g. 
lucerne, Simpson & Lipsett, 1973; cotton, Doss 
& Lund, 1975; wheat and oats, Pinkerton & 
Simpson, 1986; Jayawardane et al., 1995), 
especially when the topsoil dries out. The 
deleterious effect of subsurface soil acidity on 
crop growth will thus be influenced by the extent 
that a plant depends on the subsurface soil for 
supply of water and nutrients. However, later in 
the growing season when temperature and plant 
growth rates increase considerably, and the 
frequency of rainfall decreases, moisture in the 
topsoil is depleted. Moreover, drying of topsoil 
decreases root capacity to utilise the nutrients in 
that layer (Nambiar, 1977; Simpson & 
Pinkerton, 1989). Therefore, plants are forced to 
rely on supply of water and nutrients from the 
subsurface soil.  
Plant species and genotypes differ greatly in 
their susceptibility to Al toxicity in acid soils 
and some of these differences are genetically 
controlled (e.g. wheat, Tang et al., 2001; 
Rajaram et al., 1991; Scott et al., 1992). 
 Plant assemblages respond sensitively to 
changing soil acidity (Ellenberg et al., 1992; 
Schaffers & Sýkora, 2000; Wamelink et al., 
2005). Soil reaction alone (pH) and various 

related soil properties, comprising available 
calcium and aluminium (Al), carbonates, base 
saturation or nitrates have been used to explain 
such responses in plant community data (e.g., 
Schaffers & Sýkora, 2000). Among different 
soil properties, high Al concentration has been 
recognized as a relevant factor driving plant 
growth and species transitions along the soil pH 
gradient (e.g., Abedi et al., 2013; Peppler-
Lisbach & Kleyer, 2009). In neutral soils, 
aluminium occurs predominantly in an 
undissolved form and does not affect plants in 
any significant way. However, it is increasingly 
solubilised when soils turn more acidic and 
aqueous Al3+ then becomes a crucial growth-
limiting factor for plants (Foy, 1992; 
Poschenrieder et al., 2008). Besides toxicity of 
monomeric aluminium, it reduces phosphorus, 
molybdenum and sulphur availability, and by 
occupying a major share of ion-exchange sites 
aluminium becomes a driving competitor for 
other cation nutrients, including calcium and 
magnesium (e.g., McLean, 1976). Therefore, 
soil aluminium has repeatedly been used to 
explain vegetational patterns on acidic soils in 
numerous studies (e.g., Neave et al., 1995; 
Abedi et al., 2013). However, so far, a little 
attention has been paid to the aluminium 
solubility, which represents a major forcing 
mechanism for Al availability in acidic soils 
(Ulrich, 1983; Wesselink et al., 1996). In fact, 
bioavailability of Al may vary considerably 
depending on the solubility of Al solids present 
in soils. Recent studies have indicated that a pH 
decrease of one unit may result in Al dissolution 
varying by almost three orders of magnitude, 
dependent on which aluminium solids are 
present (Mulder & Stein, 1994; Wesselink et al., 
1996; Dlapa, 2002), thus resulting in different 
growing conditions for plants. 
 
MATERIALS AND METHODS  
 
Determination of exchangeable acidity 
extractable in solutions of neutral salts, not 
buffered from soils (exchangeable aluminum) 
after A.V. Sokolov. The described procedure is 
applicable to soil samples from group A, soils 
unsaturated in basic cations, which contain 
exchange acidity and which have a pH (in 
aqueous suspension) lower than 5.8 (STAS 
7184/12-88, Annex A4 ). The extractable acidity 
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in solutions of neutral, unbuffered salts (As) is 
the acidity due to exchangeable H+ ions from 
strong acids and acidoids and H+ ions resulting 
from the hydrolysis of exchangeable Al3+ ions 
(STAS 7184/12-88, point 1.1.6) 
From the soil profiles described above, 
disturbed soil samples were taken from various 
parts of the soil horizons to collect average 
horizon samples in order to determine particle-
size distribution and some chemical analyses 
(pH-in 1:2.5 water suspension using SR 7184-
13:2001 PTL04 method, mobile forms of 
phosphorus (PAL) and potassium (KAL) as plant 
available extracted in ammonium acetate lactate 
using STAS 7184/19-82 PTL19 and STAS 
7184/18-80 PTL 22 methods), respectively, and 
other current analyses described by Florea et al. 
(1987). Methods for unsaturated soils in basic 
cations, which also contain exchange acidity 
(STAS 7184/12-88, PTL-15) and unsaturated 
soils in basic cations that also contain exchange 
acidity (STAS 7184/12-88, PTL13). 
The experiments carried out in 2020 aimed at 
knowing the chemical particularities of the soils. 
 
RESULTS AND DISCUSSIONS  
 
In the root system Al3+ is accumulated mainly in 
the cell wall (apoplastic site) (Rengel & Reid, 
1997), in particular in its pectic part (Chang et 
al., 1999). Thus, a possible mechanism of Al 
toxicity could involve interactions between the 
metal and pectates present at the soil-root 
interface. Gessa and Deiana (1992) validated a 
synthetic Ca-PG network as a soil-root interface 
model, useful to study ionic interactions (Deiana 
et al., 2001). Blamey et al. (1993) used a similar 
Ca-PG network and showed that Al induced a 
reduction of the water flux through the interface 
model. Due to extreme complexity of 
aluminium chemistry in soils (Lindsay, 2001; 
Poschenrieder et al., 2008), we did not 
investigate the soil mechanisms responsible for 
this discontinuity. Some methodological 
considerations on the analytical Al values used 
in this study need to be discussed. Quite a few 
soil Al indices have been used in plant and 
vegetational studies, including monomeric Al, 
exchangeable Al, Al/Ca ratio and Al toxicity 
index (e.g., Grauer & Horst, 1991; Peppler-

Lisbach & Kleyer, 2009). The conclusion from 
literature is that Al concentration in soils 
corresponds with complex mechanisms 
responsible for Al solubility, and that these 
mechanisms vary under different soil 
environments (Dlapa, 2002). Consequently, Al 
concentrations demonstrate discontinuities as 
different mechanisms take control over its 
solubility across different soils, thus forcing 
distinct edaphic conditions for vegetation.  
Also aluminium as a growth limiting factor has 
been recognized for many years (Miyake, 1916). 
At high concentrations, Al ions reduce nutrient 
availability in soils, harm plant cells and inhibit 
plant growth (Poschenrieder et al., 2008).  
High Al resistance is therefore an important trait 
of plant species occupying acidic soils. 
Although aluminium impacts on wild plants 
received considerable less attention than crop 
plants, there are numerous studies identifying 
aluminium as a major factor filtering species 
composition in favour of Al-resistant plants 
(Abedi et al., 2013 and literature cited therein). 
Because Al also forms inorganic complexes 
with F– and SO4

2–, so the formation of which 
also varies with pH, the concentration of the 
inorganic ligands, ionic strength and 
temperature. Its easy transition from solid to 
liquid phase and high solubility in the acid 
environment are decisive factors for its 
important function in the environment. The total 
aluminium content in soil showed insignificant 
variations in the plants grown on irrigated land. 
First, after analysing the pH, it can be taken into 
account if the pH is lower than 5.8 to analyse the 
amount of aluminium in the soil samples. The 
results can be seen in Figures 1, 2 and 3. After 
this analysis was carried out in the laboratory, it 
was observed that the exchangeable aluminium 
values varied from 0.05 to 1.09 for all samples 
in which exchangeable aluminium content 
appeared. From the 242 samples taken from the 
third place 45 samples were content in 
exchangeable aluminium with values that vary 
from 0.05 till 0.64. The results can be seen in 
Figures 1, 2 and 3. So the quantities of 
exchangeable aluminium fall under the low 
aluminium content in the soil. As can be seen in 
the number three figures, the pH value vary from 
a minimum of 4.80 to a maximum of 5.42. 
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Table 1. Changeable Al content classes (from Florea et 

al. (ed.), 1987 - in Lacatusu et al., 2017) 

Figure 1. The pH values in the first sampling  
 

In this chart we can see that the values of the pH 
vary from 4.8 till 5.5 maximum. Yet the more 
values of the pH are more the 5. Having this low 
pH the soil keeps a very small quantity of 
aluminium in.  

Figure 2. The pH values in the second sampling  
 

In this area also the pH is lower than 5.8 but can 
be seen that the values are all more than 5.1 till 
5.4 so the quantities of aluminium will be also 
very small correlating with the depth of the 
sampling. 
In this case even if we took a bigger number of 
samples of soil it is clearly seen that the pH of 
all of them is like in case two is bigger than 5 so 
the quantity of the aluminium is also of a very 
small appreciation of content. 

 

 
Figure 3. The pH values in the third sampling 

 
After this in the next Figures 4 and 5 can be seen 
the changeable Al from these soil samples where 
we can see that in the first case the quantity of 
aluminium is the most big compared with the 
other two analyses from Figures 5 and 6 where 
the pH was bigger than 5.  
 

 
Figure 4. Changeable Al content in Căldăraru 

(me/100 g) 
 

  
Figure 5. Changeable Al content in Costești (me/100 g) 

 

  
Figure 6. Changeable Al content in Costești (me/100 g) 

 

Al3+ value changeable,  
me/100 g 

Appreciation of 
content 

≤ 0.3 extremely small 
0.4-0.8 very small 
0.9-2.0 little 
2.1-4.0 middle 
4.1-6.5 big 

6.6-10.0 very big 
≥ 10.1 extremely big 
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Starting from the year 2020 this test for soil 
samples was selected and the conclusions were 
taken. 
 
CONCLUSIONS  
 
These results of the laboratory analyses made 
for the soil in the area Costești and one near 
Căldăraru shown very clear the need to correct 
calcium deficiencies in the soil. Is essential and 
to correct the acidity of the soil. Farmers in the 
area must use fertilisers according to a clear plan 
so that productive areas of the country do not 
become agriculturally inactive due to changes in 
properties over time. Soils become acidic due to 
the excessive use of fertilisers and other 
chemical solutions that have the effect of 
lowering the pH. However the release of the 
Aluminium from soil due to soil acidity or 
salinity can affect the content of mobile 
Aluminium in groundwater and this can cause 
health problems to humans, plants and animals.  
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