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Abstract  
 
This paper provides the results of assessing the possibility of using frequency ratio (FR) and Shannon’s entropy (SE) 
models to predict the intra-field spatial heterogeneity zones (IFHZ) which are taken into account when performing 
various technological processes in precision farming. The studies were carried out in 2021-2022 in the Radomyshl 
community of Zhytomyr raion (Zhytomyr oblast, Ukraine) in an area of 6.602 km2. To determine IFHZ, nine soil 
parameters were used, the suitability of which for prediction was determined by multicollinear analysis. These data 
include the hydrolytic acidity, nitrogen, phosphorus and potassium content, the soil buffer balance index, and B, Mo, 
Cu, and Zn content. The area under the receiver operating characteristic (AUROC) method has been utilised to validate 
both FR and SE models. The research suggests that the AUROC curve for SE (0.84) was better than that for FR (0.82). 
Hence, the SE model predicts IFHZ more accurately than the multivariate statistical model FR in the study area. 
 
Key words: intra-field heterogeneity, forecasting; frequency ratio, Shannon’s entropy, model comparison. 
 
INTRODUCTION 
 
Precision farming technology provides a viable 
solution for managing profitability and 
reducing production costs in agriculture, 
especially in the face of dwindling farmland 
and increasing energy and raw material costs 
for mineral fertilizers (Мyslyvа et al., 2021; 
Hrynevych et al., 2022). This assertion is 
supported by the expected growth of the 
precision farming market to $11.54 billion by 
2026, with a CAGR of 14.3% (ReportLinker, 
2022).  
Ukraine is an important global agricultural 
producer, accounting for 41% of the country's 
total exports in 2021, and is a top exporter of 
sunflower meal and oil, corn, and wheat 
(USDA, 2022). Precision farming technology 
has already gained significant traction in 
Ukraine, with an average usage percentage of 
51.2% (UCAB, 2021). Its relevance to the 
Ukrainian agrarian sector is particularly 

noteworthy, given the shift in the main grain 
production regions from the country's south and 
southeast to its less fertile northern and western 
regions, including the 100,000 km2 Ukrainian 
Polissia. 
It is widely understood that the successful 
adoption of precision farming requires the 
identification and demarcation of spatially 
diverse areas within a field known as intra-field 
spatial heterogeneity zones (ISHZ). These 
zones are taken into consideration when 
carrying out various technological operations in 
crop production, as highlighted by research 
conducted by Córdoba et al. (2016) and 
Méndez-Vázqueza et al. (2019). 
Considering the specific nature of land use and 
land tenure in Ukraine, as well as the 
specialization of agricultural enterprises, the 
most effective method for identifying intra-
field heterogeneity zones is an approach that 
takes into account multiple soil characteristics. 
However, regardless of the specific approach 
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and parameters used, Geographic Information 
Systems (GIS) and mathematical modelling 
methods such as Frequency Ratio (FR) and 
Shannon's Entropy (SE) provide a universal 
tool for identifying ISHZs. Although these 
methods have been extensively and effectively 
utilized for flood prediction (Arabameri et al., 
2019; Arora et al., 2021), landslide 
susceptibility (Shano et al., 2020; Wubalem, 
2021), and forecasting groundwater resources 
distribution (Al-Ruzouq et al., 2019; Chatterjee 
et al., 2020), their use in identifying of intra-
field spatial heterogeneity zones remains 
relatively scarce. 
Considering all of the above, the objective of 
this study is threefold: (1) to process initial data 
on soil parameters and generate thematic layers 
containing relevant attribute information; (2) to 
identify and map ISHZs with distinct land 
quality, based on a combination of soil 
parameters, using the FR and SE modelling 
techniques; and (3) to compare the outcomes of 
both methods to determine which one is most 
effective in detecting ISHZs. 
 
MATERIALS AND METHODS  
 
The studies were carried out in 2021-2022 in 
the Menkivka starostynsky okrug Radomyshl 
community of Zhytomyr raion (Zhytomyr 
oblast, Ukraine). The study area is a part of the 
Zhytomyr physical-geographical region of the 
Ukrainian Polissia and located between 50°37´ 
to 50°3´ N and 29°08´ to 29°12´ E and spreads 
in an area of 6.59 km2 (31.8% of total arable 
land) (Figure 1). 
The climate of the study area is temperate (Dfb 
due to Köppen-Geiger climate classification).  
The soil cover of the study area is represented 
by Dystric Leptosols (0.28 km2), Anthric 
Luvisols (3.44 km2), Anthric Retisols (0.23 
km2) and Umbric Gleysols (2.65 km2) 
(according to the international soil 
classification system (WRB, 2014) and has a 
predominantly sandy-loamy texture. 
A total of 145 geo-referenced representative 
surface soil samples at 0-20 cm depth were 
collected within the territory of interest. The 
selection was carried out on an irregular grid. 
The samples were crushed, air-dried in shade at 
room temperature (~ 25°C), and passed through 
a 2 mm sieve for further analysis. 

 

 
 

Figure1. Location of the study area 
 
The following parameters were determined in 
each soil sample: humus content (Hu) - 
according to NSTU 4289:2004; pHKCl (pH) - 
according to GOST 26483-85; cation exchange 
capacity (CEC) - according to ISO 11260:1994; 
calcium (Ca) and magnesium (Mg) - according 
to GOST 26487-85; hydrolytic acidity (Ha) - 
according to GOST 26212-91; nitrogen (N) - 
according to NSTU 7863:2015; phosphorus (P) 
and potassium (K) - according to NSTU 



140

 
4405:2005; molybdenum (Mo) - according to 
GOST 50689-94; boron (B) - according to 
GOST 50688-94. The acid soluble (1N HCl 
extractant) forms of lead (Zn) and copper (Cu) 
were determined through the method of atomic 
and absorption spectrometry on the SOLAAR 
MkII-M6 Double Beam AAS device. The soil 
buffer balance index (SB) was determined by 
the Nadtochу method (Nadtochy, 1993). 
To determine which soil parameter is best 
suited for identifying ISHZs, a multicollinearity 
analysis was conducted. The analysis utilized 
variance inflation factor (VIF) and tolerance 
(TOL) to assess whether the explanatory 
variables used in the modelling are highly 
dependent on one another. 
The integration of thematic layers and their 
corresponding percentages was utilized to 
determine the spatial distribution of intra-field 
spatial heterogeneity through overlay analysis 
in an ArcGIS 10.8 environment. To prepare a 
spatial variability map for each soil variable, 
both geostatistical and deterministic methods 
were used for interpolation techniques. 
Geostatistical methods were used for hydrolytic 
acidity, the content of B and Mo, and the soil 
buffer balance index.  
Cross-validation analysis was conducted to 
evaluate the accuracy of interpolation utilizing 
methods. 
The optimal number of gradations of 
heterogeneity zones within the study area was 
established by the Principal Component 
Analysis (PCA) technique (Zeraatpisheh et al., 
2020). 
FR is defined as (Guru et al., 2017) (1): 
 
FR = (W/TW)/(CP/TP)                          (1) 
 
where FR is a frequency ratio of the class of 
each soil parameter, W is the number of pixels 
of the most fertile and least fertile soil locations 
for each class of thematic maps; TW is the 
number of total pixels of the most fertile and 
least fertile soil locations in the study area; CP 
is the number of pixels in each thematic class 
and the TP is the total number of pixels in the 
study area. In the FR model, the FR value of 
each class in the thematic layer was considered 
as the weight of that particular class in thematic 
parameters to determine intra-field 
heterogeneity. 

The SE for all the explanatory variables to 
prioritize the susceptibility of the individual 
explanatory variable to intra-field spatial 
heterogeneity forming and subsequent final 
susceptibility mapping has been calculated 
using the following equations (2-6): 
 
Pij = b/a                                                 (2) 

 
(Pij) = Pij

∑ Pij
Sj
j=1

                                                 (3) 

 
Hij = – ∑ (Pij)

Sj
j=1 log2(Pij), j = 1, … , n (4) 

 
Ij = Hjmax–Hji

Hjmax
, I = (0, 1), j = 1, … , n              (5) 

 
Wj = Ij·Pij                                                                         (6) 
 
where a is the class area of the independent 
variable and b is the area of the most fertile and 
least fertile soil locations falling within the 
class, expressed as a percentage, (Pij) is the 
probability of density, Hj and Hjmax represent 
entropy values, Ij is the information coefficient. 
Wj represents the resultant weight value for the 
factor as a whole.  
Microsoft Excel program was used in the 
calculation of the FR and SE of the total input 
factors and the spatial analyst module of 
ArcGIS 10.8 has been used to reclassify and the 
final intra-field spatial heterogeneity zones 
maps were produced using a raster calculator. 
Receiver Operating Characteristic (ROC) was 
chosen as the method for estimating model 
performance. In this method, for every possible 
cut-off value, false positive rates (FPR) and 
true positive rates (TPR) were plotted on the x-
axis and y-axis, respectively (7), (8): 
 
FPR = FP/(FP+TN)                                     (7) 
 
TPR = TP/(TP+FN)                                     (8) 
 
where FP is the number of false positive cases, 
TN is the number of true negative cases, TP is 
the number of true positive cases, and FN is the 
number of false negative cases. The FPR also 
termed sensitivity (Arabameri et al., 2019), is 
the probability a test will render an intra-field 
spatial heterogeneity when it exists and the 
TPR, which is also known by the name  



141

 
“1-specificity” indicates one minus the 
probability a test will be negative in case of 
actually non-occurrence of intra-field spatial 
heterogeneity. Hence, in ROC, the sensitivity is 
plotted as a function of the false positive rate 
for various levels of cut-off points meaning 
thereby, each point on ROC is a 
sensitivity/specificity pair connected to a 
particular decision threshold (Arora et al., 
2021).  
The area under the curve (AUC) represents the 
discriminatory power of a model with which it 
accurately predicts the occurrence or non-
occurrence of intra-field spatial heterogeneity. 
AUC values of <0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 
and >0.9 indicate, respectively, poor, moderate, 
good, very good, and excellent model 
performance (Nhu V.H. et al., 2020).  
The ROC curve and the AUC were calculated 
using the ROC Tool of ArcSDM. 
 
RESULTS AND DISCUSSIONS  
 
At the outset, the study planned to utilize 14 
soil parameters. However, after conducting the 
multicollinearity analysis, it was found that 
variables like humus content, pH(KCl), cation 
exchange capacity (CEC), Ca, and Mg content 
had high multicollinearity with VIF>10 and 
TOL <0.1, and were excluded from the 
analysis. The VIF and TOL values for all the 
variables ranged from 1.60 to 8.13 and 0.121 to 
0.62, respectively, as shown in Figures 2 and 3. 
 
 

 
Figure. 2. Multicollinearity analysis of the soil 

parameters (VIF) 

 
Figure. 3. Multicollinearity analysis of the soil 

parameters (TOL) 
 
Then deterministic and geostatistical 
interpolation methods were used to visualize 
the spatial distribution of nine soil parameters. 
Thus, nine raster images were generated as a 
result and then were utilized as the fundamental 
geospatial data to carry out the forecasting of 
intra-field spatial heterogeneity (Figures 4-12).  

 

 
 

Figure 4. Intra-field spatial heterogeneity factors (soil 
parameters) used in this study: hydrolytic acidity 

 
It is important to point out that the southeastern 
and eastern areas of the study area exhibit the 
highest values for all of the soil parameters 
examined, whereas the land parcels with lower 
values are primarily concentrated in the 
northwestern and western areas. 
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Figure 5. Intra-field spatial heterogeneity factors (soil 

parameters) used in this study: nitrogen 
 

 
Figure 6. Intra-field spatial heterogeneity factors (soil 

parameters) used in this study: phosphorus 
 

 
Figure 7. Intra-field spatial heterogeneity factors (soil 

parameters) used in this study: potassium 

 
Figure 8. Intra-field spatial heterogeneity factors (soil 

parameters) used in this study: copper 
 

 
Figure 9. Intra-field spatial heterogeneity factors (soil 

parameters) used in this study: lead 
 

 
Figure 10. Intra-field spatial heterogeneity factors (soil 

parameters) used in this study: boron 
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Figure 11. Intra-field spatial heterogeneity factors (soil 

parameters) used in this study: molybdenum 
 

 
Figure 12. Intra-field spatial heterogeneity factors (soil 
parameters) used in this study: soil buffer balance index 

 
This variability is largely attributed to the 
diverse soil cover, which comprises four 
different types of soil based on the FAO 
classification and eleven different types of soil 
according to the national classification system 
used in Ukraine. 
To determine the appropriate number of 
categories for the intra-field spatial 
heterogeneity zones, PCA was applied. The 
principal components (PCs) with eigenvalues 
greater than 1 and accumulative contributions 
exceeding 60% were chosen (Oldoni et al., 
2019; Srinivasan et al., 2022). Only the first 
three PCs were selected based on this criterion, 
which explained a total variability of 76.21% 
(Table 1). 

Table 1. Principal component analysis for soil parameters 

Principal 
compo 
nents 

Eigenvalues 
Component 

loadings 
(%) 

Cumulative 
loadings, 

(%) 
РС1 3.98 44.20 44.20 
РС2 1.92 21.32 65.52 
РС3 1.19 10.69 76.21 
РС4 0.82 9.09 85.31 
РС5 0.52 5.73 91.03 
РС6 0.37 4.15 95.18 
РС7 0.24 2.67 97.85 
РС8 0.14 1.57 99.42 
РС9 0.05 0.58 100.0 

 
Frequency ratio is a susceptibility model that is 
commonly used and operates on the premise 
that the ratio of two event frequencies is a more 
effective predictor of the likelihood of those 
events occurring than the frequencies alone. In 
cases where the FR value for a soil parameter is 
higher, it suggests a strong correlation between 
the dependent variable (intra-field spatial 
heterogeneity zone) and the independent 
variable (the soil parameter in question). 
Conversely, FR values less than 1 indicate a 
weak relationship between the two variables 
(Tehrany et al., 2013).  
The levels of phosphorus and zinc in the study 
area were categorized into four different 
classes, while the other soil parameters were 
divided into three classes, as shown in Table 2. 
The highest frequency ratio values for 
indicators such as potassium, boron, copper, 
molybdenum, and soil buffer balance index 
were found in the upper categories (class 3). On 
the other hand, the maximum frequency ratio 
values for phosphorus, zinc, and hydrolytic 
acidity in the soil were observed in the lower 
categories (class 1), while the content of 
nitrogen showed the highest frequency ratio in 
the medium categories (class 2).  
The highest prediction rate (5.667) was 
achieved for the phosphorus content, while the 
lowest prediction rate (2.423) was obtained for 
the zinc content. Based on these prediction 
rates, the studied soil parameters can be 
arranged in descending order as follows: P > 
SB > K > Mo > N > B > Ha > Cu > Zn. 
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Table 2. Intra-field spatial heterogeneity zones, 

computed using frequency ratio (FR) 

Soil 
parameter 

Class of 
soil 

parameter 

Frequency 
Ratio (FR)  

Prediction 
Rate (PR) 

B 0.12–0.25 0.460 3.525 
0.26–0.29 2.400 
0.30–0.44 3.452 

Cu 1.57–1.82 0.877 2.692 
1.83–2.01 0.721 
2.02–2.43 1.147 

Mo 0.04–0.09 0.486 4.549 
0.10–0.14 1.182 
0.15–0.23 3.413 

Ha 0.006–1.29 2.667 3.345 
1.30–2.24 0.584 
2.25–3.12 0.527 

SB 0.12–0.29 0.141 5.483 
0.30–0.43 1.607 
0.44–0.60 1.888 

N 168–187 0.489 4.328 
188–200 0.571 
201–230 0.489 

P 100–107 1.733 5.667 
108–112 1.512 
113–116 0.869 
117–121 0.494 

K 116–135 0.379 4.652 
136–151 1.127 
152–179 8.596 

Zn 2.99–3.21 4.265 2.423 
3.22–3.33 0.692 
3.34–3.45 0.647 
3.46–3.65 0.305 

 
To identify the intra-field spatial heterogeneity 
zones using Shannon's entropy modelling, each 
of the nine soil parameters was assigned a 
weight (Wj) based on Equation (6) of the SE 
model. The highest weight was assigned to the 
soil phosphorus content (5.456), while the 
lowest weight was assigned to copper (0.046) 
(Table 3).  
The maximum probability density (Pij) was 
determined for the lower categories (class 1) 
based on the levels of phosphorus, zinc, and 
hydrolytic acidity in the soil, while the 
remaining parameters showed the highest 
probability density in the upper categories 
(class 3). Based on the assigned weights, the 
soil parameters can be arranged in descending 
order as follows: K >N > Zn > Mo > B > Ha > 
SB > P > Cu. 
 
 
 

Table 3. Intra-field spatial heterogeneity zones, 
computed using Shannon’s entropy (SE) 

So
il 

 
pa

ra
m

et
er

 

(P
ij)

 

H
j f

or
 e

ac
h 

H
j (

to
ta

l) 

H
jm

ax
 

I j 

P i
j (

al
l) 

W
j 

B 
0.07 0.28 

1.28 1.59 0.19 6.31 1.21 0.38 0.53 
0.55 0.48 

Cu 
0.32 0.53 

1.56 1.59 0.02 2.75 0.05 0.26 0.51 
0.42 0.53 

Mo 
0.10 0.32 

1.20 1.59 0.24 5.08 1.24 0.23 0.49 
0.67 0.39 

Ha 
0.71 0.36 

1.17 1.59 0.26 3.78 0.99 0.16 0.42 
0.14 0.40 

SB 
0.04 0.18 

1.19 1.59 0.25 3.64 0.90 0.44 0.52 
0.52 0.49 

N 
0.06 0.23 

0.65 1.59 0.59 8.78 5.17 0.07 0.26 
0.88 0.16 

P 

0.38 0.53 

1.86 2.00 0.07 4.61 0.33 0.33 0.53 
0.19 0.45 
0.11 0.35 

K 
0.04 0.18 

0.73 1.59 0.54 10.10 5.46 0.11 0.35 
0.85 0.20 

Zn 

0.72 0.34 

1.27 2.00 0.36 5.91 2.15 0.12 0.36 
0.11 0.35 
0.05 0.22 

 
While FR model is typically utilized for 
evaluating landslide susceptibility (Abdo et al., 
2022; Babitha et al., 2022), flood hazard 
assessment (Pawar et al., 2022; Isiaka et al., 
2023), or identifying potential groundwater 
areas (Guru et al., 2017; Olajide et al., 2022), in 
the current study, it exhibited strong 
performance for detecting ISHZs (Figure 13) 
with an accuracy rate of up to 82% (as 
demonstrated in Figure 14). 
To implement Shannon's entropy model for 
ISHZ detection, it is necessary to compute the 
entropy value for each site in the study area 
based on the selected soil parameters 
determined by the multicollinear analysis. 
Parcels with the highest entropy value will 
display the greatest discrepancies in soil 
parameters, while parcels with the lowest 
entropy will show the greatest uniformity in 
soil parameters. 
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Figure 13. Zones of intra-field spatial heterogeneity with 
corresponding soil quality (red – low quality; yellow – 

moderate quality; green – high quality) 
 
Despite the fact that Shannon's entropy model 
is often utilized for predicting groundwater 
levels (Razzagh et al., 2021), forecasting flood-
prone areas (Haghizadeh et al., 2017), and 
assessing the degree of urban expansion in 
various regions (Das & Angadi, 2020), it can 
be effectively employed to predict the presence 
of ISHZs with up to 84% precision, as shown 
in Figure 15. 
 

 

Figure 14. Performance of the model for the spatial 
prediction of intra-field heterogeneity zones using the 

ROC curve technique and AUC for FR model 

 

Figure 15. Performance of the model for the spatial 
prediction of intra-field heterogeneity zones using the 

ROC curve technique and AUC for SE model 
 
As a result of the performed studies, it was 
found that the efficiency of the FR model is 
lower than the efficiency of the SE. However, 
given its ease of use as well as its robustness to 
small sample sizes, the FR model can be used 
to pre-detect the presence of ISHZs and is the 
best choice for analyzing datasets with a 
limited number of observations. 
As previously mentioned, there is currently no 
universal method for identifying intra-field 
spatial heterogeneity zones, and different 
techniques have been proposed by researchers 
(Oshunsanya et al., 2017; Kutsayeva & 
Myslyva, 2020). This study focused solely on 
an approach based on the chemical properties 
of the soil, and the list of soil parameters used 
is not exhaustive and can be expanded 
depending on the availability of geospatial data 
on soil properties and the requirements for 
identifying ISHZs. 
 
CONCLUSIONS 
 
While both the SE and FR models 
demonstrated high accuracy in identifying 
intra-field heterogeneity zones, the SE model 
performed better and has significant potential 
for mapping these zones not only within 
Ukraine's Polissia region but also in 
neighbouring countries with similar soil cover 
parameters. Therefore, we recommend using 
the SE model for identifying intra-field 
heterogeneity zones as a tool to enable 
agricultural enterprises of different ownership 
structures to implement precision farming 
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practices, including variable rate (VR) 
technologies, more effectively. 
Future studies should prioritize carrying out 
field trials with crops using a crop rotation 
approach to validate the obtained outcomes and 
to provide more clarity on the established limits 
of the identified intra-field spatial heterogeneity 
zones. 
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