
313

 
ESTIMATION OF MAIZE YIELDS  

IN THE BARAGAN PLAIN (ROMANIA) - A SPATIALLY EXPLICIT 
APPLICATION OF A CROP GROWTH MODEL 

 
Diana DOGARU1, Cătălin LAZĂR2  

 
1Institute of Geography, Romanian Academy, Environmental Geography and GIS Department,  

12 Dimitrie Racovita Steet, 023993, Bucharest, Romania 
2National Agricultural Research and Development Institute Fundulea, 1 Nicolae Titulescu Street, 

Fundulea, Calarasi County, 915200, Romania  
 

Corresponding author email: dianadogaru77@yahoo.com 
 
Abstract  
 
Crop growth models are useful tools for in-depth analyses on agricultural productivity and resource (land and water) 
use under various environmental and management conditions, rendering solution-oriented information for end-users. 
The paper showcases a spatially explicit application of a crop growth model for simulating the cultivation of a 
commonly used maize cultivar in the Baragan Plain, South-East Romania. We have parameterized the EPIC+ model 
(Williams et al., 1989; Kamali et al., 2018) with geographical, agricultural practices and experimental-based crop 
inputs, and have designed two scenarios for crop parameter calibration and improved nutrient and irrigation 
application, respectively. These methodological and conceptional steps enabled model performance assessment and 
maize yields estimation in the study area. With adjustments of sensitive crop parameters and agricultural practices in 
the model setup, crop growth is particularly constrained by stress factors (e.g. nutrient stress), and potentially by model 
structure parameters, which also need to be calibrated. It was achieved a good agreement between areal averaged 
estimated yields and reported yields, suggesting that the model is suitable for further regional investigations and for 
supporting decisions on agricultural resources management. 
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INTRODUCTION  
 
Crop growth simulation models are 
increasingly used for assessing a wide range of 
environmental problems, such as soil and water 
resources quality and availability, climate 
change impacts on crop production or soil 
carbon sequestration. They basically allow for 
designing virtual experiments to study, in a 
systematic and integrated way, the complex and 
interdependent biophysical effects of 
atmosphere and soil processes on crop growth 
and formation (Minoli et al., 2019). Coupled 
with a geographic information system, crop 
growth models have been applied particularly 
at regional and global-scale levels to estimate 
present and future crop yields, agricultural 
water productivity, nitrogen losses, crop 
vulnerability to drought, etc. under various 
environmental conditions and agricultural 
practices (Liu at al., 2007; Liu, 2009; Folberth, 
et al., 2012, 2016; Mauser et al., 2009; Liu et 
al., 2016). Termed as global gridded crop 

models (Rosenzweig et al., 2014) given the 
geospatial character of the utilized datasets, 
they provide evidence-based information, 
comprehensive overviews and comparisons 
among regions, being useful tools in decision 
making processes concerning, for instance, 
nature-based solutions for climate mitigation 
and adaptation (Balkovic et al., 2018), land and 
water management in agriculture (Flach et al., 
2020), or sustainable agricultural productivity 
(Mauser et al., 2015).  
The current challenging trajectories of both 
societal development and consumption, and 
climate change put a stress on water resources 
use. It becomes clear that sustainable 
management of agricultural water resources is a 
priority supported by deep understanding of the 
processes at the interface of atmosphere-soil-
plant system and by evidence-based estimates 
of yield production and water consumption. In 
Romania, such investigations are particularly 
useful considering the new development strate-
gies in agriculture, according to which the 
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irrigated area is planned to increase from 0.5 
million ha to almost 2 million hectares by 2020, 
in an ambitious objective which aims to boost 
agricultural activities and production, contri-
buting also to climate change adaptation and 
rural communities’ resilience (MADR, 2016).  
In this context, the aim of this paper is to test 
the application and performance of a crop 
growth model for a pilot area in the Romanian 
Plain in order to analyse the effect of increasing 
irrigation capacities on crop production and to 
exemplify the utility and relevance of crop 
models in studies on agricultural resource 
management. To this end, we applied an 
extended version of the EPIC (Environmental 
Productivity Integrated Climate) crop growth 
model (Williams et al., 1989) which is 
equipped with a module for automatic 
calibration and parameter uncertainty 
assessment (Kamali et al., 2018).  
The pilot area chosen for this study is the 
Baragan Plain, a representative agricultural 
region located in SE Romania (Figure 1). The 
area is a geographical unit of the Romanian 
Plain characterised by relatively homogeneous 
features in terms of relief, climate and soil type 
coverage. Generally, the soils are nutrient rich 
soils of the Chernozems types with good water 
retention capacity, while the climate is 
temperate-continental with increasing dry 
spells which intensify the already existing 
conditions of regional drought.  
 

 
Figure 1. Cropland in the Baragan Plain, SE Romania; 

geospatial dataset: Dogaru & Kucsicsa, 2015 
 
MATERIALS AND METHODS  
 
Brief information on the crop model 
EPIC+ is a gridded crop model that has been 
created by Kamali et al., 2018 as a Python-

based spatial framework for the application and 
calibration of the field-scale, bio-physical EPIC 
(Environmental Productivity Integrated 
Climate) model. EPIC was developed by 
Williams et al., 1989 and constantly improved 
to accurately simulate process-based 
interactions at the interface of soil-crop-
atmosphere system under various environments 
(Gassman et al., 2005; Izauralde et al., 2006).  
In EPIC, potential crop growth is calculated 
daily based on intercepted photosynthetically 
active radiation and conversion of CO2 to 
biomass (Stockle et al., 1992; Williams et al., 
1989). The model simulates plant growth, yield 
and soil dynamics on a daily time step using a 
set of empirically based algorithms and climate, 
soil types and properties and crop management 
input data (Williams et al., 1989). EPIC first 
estimates potential plant growth and then 
reduces it according to the limitation due to the 
most dominant stresses (i.e. N and P deficit, 
water, temperature, aeration, salinity) by a 
factor between 0 and 1.  
Yield is estimated using an actual harvest index 
(HI), which is calculated by the model within 
the range of a defined potential HI and a 
minimum HI depending on water stress. 
Potential evapotranspiration (ET) is calculated 
using the Hargreaves method (Hargreaves and 
Samani, 1985) and actual ET according to 
Ritchie (1972).  
The EPIC+ model runs EPIC in each grid cell at 
a user defined resolution (Kamali et al., 2018) 
and implements the newest version of it, (i.e. 
EPICv.0810). It is coupled with the SUFI-2 
automatic calibration module of SWAT (Soil 
and Water Assessment Tool) model, 
accounting for parameter uncertainty from all 
sources (e.g., inputs, crop parameters, and 
model structure) (Abbaspour, 2015). 
Uncertainties are expressed by distributions 
associated to crop growth and model structure 
parameters. Latin hypercube method is applied 
to sample the parameters, while the output 
uncertainty is quantified as the 95% prediction 
uncertainty band (95PPU) calculated at the 
2.5% and 97.5% levels of the cumulative 
distribution function of the output variables 
(Abbaspour, et al., 2007). Detailed information 
on EPIC+ application and model automatic 
calibration is found in Kamali et al. (2018).  
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Model set up 
Input datasets 
EPIC model operates with both detailed 
process-based parameters of atmosphere - soil - 
plant interactions and comprehensive input 
datasets on: 1) location (longitude, latitude, 
elevation and slope), 2) climate, 3) soil types 
and properties, 4) land use, 5) cropland 
management such as irrigation and fertilization 
application, and 6) crop specific parameters. In 
this study all geospatial datasets were rasterized 
where applicable and harmonized at 1 km 
resolution grid cell.  
DEM data were obtained from the 3 arc-
seconds (approx. 90m resolution) digital 
elevation model of the NASA Shuttle Radar 
Topographic Mission provided by CGIAR-CSI 
GeoPortal (Consortium for Spatial Information, 
2018). Terrain slopes were subsequently 
derived from the DEM raster based on the 
maximum change in the elevations between 
each cell and its eight neighbours.  
ROCADA gridded climatic data was 
downloaded from PANGAEA data portal to 
assimilate in the crop model the daily 
parameters including: min. temperature, max. 
temperature, precipitation, and solar radiation. 
This dataset is based on daily observations 
recorded at all meteorological stations in 
Romania covering 1961-2013 time interval 
(Birsan & Dumitrescu, 2014).  
The geospatial dataset of harvested area for 
maize was created on a 30´´x30´´ latitude-
longitude grid (~ 1km) by combining locality-
level reported data on land use and crop-
specific harvested area from the National 
Institute of Statistics with CORINE Land 
Cover 2006 (CLC) raster data provided by 
European Environmental Agency (EEA, 2016). 
Once we re-classified the CLC maps for 
cropland, pasture and non-cropland areas, we 
calculated the proportion of cropland in each 
1km grid cell (Dogaru & Kucsicsa, 2015) by 
applying the methodology developed by 
Ramankkuty, et al. (2008) for creating global 
geospatial datasets of cropland distribution on 
the basis of high-resolution satellite derived 
land cover data, calibrated against agricultural 
census data. Further on we followed the steps 
proposed by Monfreda, et al. (2008) to first 
determine the ratio of the crop area to the total 
cropland in each locality and then to multiply it 

with the proportion of cropland in each 1km 
grid cell for the associated locality of that grid 
cell. The result ultimately represents the 
proportion of the specific crop in each grid cell. 
Since the crop-specific harvested area from the 
National Institute of Statistics at locality level 
is available until 2003, the final dataset of 
maize harvested area was averaged around the 
year 2002, being though in a relatively close 
time scale correspondence with the CLC 2006 
dataset used in this study.  
Soil types and their physical-chemical 
characteristics were provided by the National 
Research and Development Institute for Soil 
Science, Agrochemistry and Environment – 
ICPA Bucharest, Romania. The following soil 
parameters were used to create the soil files 
used in EPIC: depth, percentage of silt and 
sand, bulk density, pH, organic carbon content, 
fraction of calcium carbonate, cationic 
exchange capacity, electrical conductivity, 
mobile N and mobile P. The files of soil 
properties were linked with the digital Soil Map 
of Romania existing at the scale of   1:200 000.  
Fertilizer application rates for N and P on 
cultivated areas treated with fertilizer were 
obtained from the National Institute of 
Statistics. These data are reported as annual 
amounts of applied fertilizer per ha at county 
level, without specifying the crop for which it 
is applied. Given a number of socioeconomic 
reasons, farmers opted for rather low fertilizer 
inputs, at least during the last decades 
(Popescu, 2013). For instance, during the 2000s 
the average rate of N fertilization was of 85 kg 
/ ha in Călărași county and of 82 kg / ha in 
Ialomița county, respectively. Here, we used a 
multiannual mean of N and P allocation for 
cultivated areas, for the entire simulation 
period. In spite of its coarseness, we consider 
that the usage of fertilizer aggregated data is a 
practical compromise.  
The spatial dataset representing the area 
equipped for irrigation resulted from digitizing 
a publicly available map of irrigation 
infrastructure issued in the framework of the 
Irrigation Strategy in Romania (MADR, 2011). 
Yearly irrigated areas in each county were 
downloaded from the online data portal of the 
National Institute of Statistics 
(http://statistici.insse.ro:8077/tempo-online/). 
To account for the areal effect of irrigation in 
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the simulation outcomes, the irrigated and rain 
fed yields were weighted in each grid cell as 
follows:  
- the irrigated and rain-fed areas were 

simulated separately in each grid cell 
- then, the weighted yield was calculated on a 

grid cell basis for each year (eq. 1): 

𝑌𝑌𝑤𝑤
𝑗𝑗,𝑐𝑐 = 𝑌𝑌𝐼𝐼

𝑗𝑗,𝑐𝑐 × 𝐴𝐴𝐼𝐼𝐼𝐼
𝑗𝑗 + 𝑌𝑌𝑅𝑅

𝑗𝑗,𝑐𝑐 × (1 − 𝐴𝐴𝐼𝐼𝐼𝐼
𝑗𝑗 )    (eq. 1), 

where 𝑌𝑌𝑤𝑤
𝑗𝑗,𝑐𝑐 [t ha-1] is the average (weighted) 

yield in the grid cell c in the county j, 𝑌𝑌𝐼𝐼
𝑗𝑗,𝑐𝑐 [t ha-

1] is the yield on irrigated cropland in the grid 
cell c in the county j, 𝐴𝐴𝐼𝐼𝐼𝐼

𝑗𝑗  [.] is the percentage 
of irrigated area in the county j applied for each 
irrigated grid cell found in the county j, and 
𝑌𝑌𝑅𝑅

𝑗𝑗,𝑐𝑐 [t ha-1] is the yield on rain-fed cropland in 
the grid cell c in the county j.  
 
Potential heat units for F376 maize cultivar 
Phenologic development of the crop depends 
on the number of heat units (or growing 
degrees days) from planting to maturity. The 
heat units (HU) are calculated for each day (k) 
according to a certain base temperature, which 
is crop-specific and above which the plant 
starts to grow, min. temperature and max. 
temperature in that day (eq. 2). We run the 
EPIC model for a maize cultivar with medium 
duration until maturity (i.e. F376) which is 
widely cultivated in the southern part of the 
country, including the Bărăgan Plain. To have a 
general, representative value of the potential 
heat units (PHU) for the F376 maize cultivar 
we used the planting and maturity dates of this 
cultivar obtained in the amelioration 
experimental fields at INCDA Fundulea during 
2007-2013, and the ROCADA climatic 
variables in several random locations 
throughout the study area. Consequently, the 
PHU was determined as an average of the 
accumulated HU from planting to maturity 
during 2007–2013 and throughout the 
considered locations.  
 
𝐻𝐻𝐻𝐻𝑘𝑘 =  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘

2  − 𝑇𝑇𝑏𝑏                    eq. (2) 
 
Crop management, simulation run-time and 
evaluation of model performance 
Maize was assumed to be planted after fertilizer 
application, top-layer plowing and field 
preparation. In EPIC harvest is programmed to 

occur at 115% of the calculated PHU fraction 
(i.e. the default assumption), taking into 
account the post-maturity drying of the crop on 
the field. Additionally, we considered no resi-
dual biomass removal after harvest as in many 
places farmers incorparate it into the soil for 
maintaining or increasing its quality. Automatic 
N and P fertilizer and irrigation options were 
set up in the model. They are based on the plant 
threshold factors (e.g. if N stress exceeded 20% 
on a giving day, N is added up to the maximum 
amount of N fertilizer application rate specified 
here by the county-level multiannual average 
during the simulation period).  
According to the availability of the time series 
of input data, especially in what regards climate 
and management opperations (i.e. fertilization 
and irrigation), the simulation period was  
1997-2013.  
The simulated yields were automatically 
calibrated against the county-level reported 
yields for the same period of time, using the 
SUFI-2 module (Kamali et al., 2018). The 
coefficient of determination (R2) and the 
standardized root mean square error (RSR) are 
the two statistics that evaluated the comparison 
between the reported and the simulated yields 
(i.e. model efficiency). R2 expresses the linear 
correspondence between the two variables, 
with 1 being the optimal result, while RSR 
measures the difference between the reported 
and the simulated yields and takes values from 
0 to ∞, where 0 is the best value. During the 
calibration process new ranges or values of 
crop / model parameters are calculated in a 
user-defined number of iterations, forming the 
parameters sensitivities. These are determined 
on a basis of a multiple regression system 
where the parameters are regressed against the 
objective function which is considered the RSR 
value. Basically the sensitivities express the 
changes in the objective function resulting from 
changes in each parameter while all other 
parameters are changing. In this we chose study 
5 influential parameters (i.e. PHU, plant 
density, N and P fertilization rates and 
irrigation volume applied) over 3 iterations to 
perform the sensitivity analysis and calibrate 
the model for the entire study area (Table 2). 
Besides, to have a better sense on model 
robustness, we performed model calibration 
and validation on rain-fed yields at a finer 
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spatial scale, specifically in 4 localities in the 
study area for which reported data were 
available (Figure 3). For this latter approach we 
took into account the same influential 
parameters, but ran 10 to 50 iterations to 
minimize parameter interaction and then fixed 
the parameters to their best values (i.e. the best 
simulation resulting from the values that 
produced the smallest objective function). 
However, studies highlight a larger range of 
both model and crop parameters that are 
sensitive and worth being calibrated in order to 
obtain reliable results (Liu, 2009; Gaiser et al., 
2010, Folberth et al., 2012). Given the large 
computational time needed for simulation 
(calibration), we opted here to test the model 
for a pilot area in order to showcase its 
relevance for further analyses which in most 
cases require adequate infrastructure as well as 
collaborative research frameworks for 
implementation.  
 
Scenario design 
To highlight the EPIC+ model applicability in 
regional studies on cropping systems produc-
tivity, we envisaged two cases of crop mana-
gement conditions which are consistent with 
the new development plans in the irrigation 
sector in Romania, specifically the rehabili-
tation of the primary irrigation infrastructure 
with the purpose of increasing the irrigated area 
(MADR, 2016). These cases are:  
- default parameters with no irrigation 

increased capacities (default simulations), 
- calibrated crop parameters with no increased 

irrigation capacities (baseline scenario). In 
this case the fertilization rates were as 
described above, while of irrigation water 
supply was set at 1000 mm per year per 
maize cultivated area, being in line with 
many reported values by farms in the agri-
cultural areas where irrigation was available.  

- increased irrigation capacities and improved 
fertilization rates (improved crop manage-
ment scenario). Here, the irrigated area was 
enhanced according to MADR, 2016 
irrigation plans, while the levels of fertiliza-
tion were increased to lower plant growth 
nutrient limitations at values of 200 kg / ha. 
We assumed sufficient irrigation water 
supply in grid cells that are equipped for 
irrigation. 

RESULTS AND DISCUSSIONS  
 
The comparison between maize yield estimates 
resulted from simulations run with model 
default parameters and the reported yields 
shows promising results for conducting this 
study. Aggregating the simulated yields at 
county level we obtained a good agreement 
between the observed and the estimated yields 
(Figure 2).  
 

 
Figure 2. Reported yields and estimated yields simulated 
by default runs for the reference period (1997 – 2013) for 
Călărași County (left) and Ialomița County (right). Each 
point in the graph represents a year and the model fit is 

expressed through r squared adjusted (R2) 
 
However, the model overestimates the 
simulated yields in the years recognized as 
drought years of the first decade of the 21st 
century (Mateescu et al., 2013) (Table 1).  
Moreover, aggregated measures can mask the 
variability in both time and space of yield 
trends, increasing the uncertainty level in the 
model outcomes and indicating the necessity 
for calibration and uncertainty measuring.  
 

Table 1. Annual average of observed yields (Yobs) and 
simulated yields with model default parameters (Ysim_d) 

Year 
Calarasi County Ialomita County 

Yobs 
kg ha-1 

Ysim_d 
kg ha-1 

Ydif 
% 

Yobs 
kg ha-1 

Ysim_d 
kg ha-1 

Ydif 
% 

1997 5218 5182 -0.7 5216 5140 -1.5 
1998 3379 3645 7.9 3084 3575 15.9 
1999 4373 4338 -0.8 4182 4020 -3.9 
2000 1307 3259 149.3 2078 3280 57.8 
2001 2818 2593 -8.0 1514 2177 43.8 
2002 2698 4424 64.0 1930 4065 110.6 
2003 3349 3721 11.1 2783 3727 33.9 
2004 6111 5142 -15.9 4742 4866 2.6 
2005 4941 5540 12.1 4288 5211 21.5 
2006 4189 3924 -6.3 3619 3645 0.7 
2007 696 1682 141.6 425 1683 295.9 
2008 3763 3321 -11.7 2991 3185 6.5 
2009 3923 3980 1.4 3152 3590 13.9 
2010 4957 5263 6.2 4623 4550 -1.6 
2011 5290 4264 -19.4 5382 4075 -24.3 
2012 3258 3547 8.9 3265 3561 9.1 
2013 6274 4879 -22.2 6113 4452 -27.2 
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In the process of calibration we adjusted the 
following crop parameters: PHU, plant density, 
N and P fertilization rates and irrigation volume 
applied. This led to an increase of the R2 of the 
county-base time series yields from 0.67 to 
0.70 for Calarasi County and from 0.66 to 0.69 
for Ialomita County, respectively. 
Nevertheless, we could not identify a distinct 
pattern of reduction of the difference between 
the estimated yields and the reported yields in 

the drought years, suggesting that the model is 
very much sensitive to water stress conditions 
and that thorough investigations on model 
behaviour in water limited environments are 
highly recommended. Moreover, the sensitivity 
analysis indicates that the estimated yields are 
considerably constrained by nutrient stress 
factors, especially by N fertilization, tempe-
rature, as shown by increased PHU values, and 
water supply (Table 2).  

 
Table 2. Sensitivity analysis on several influential parameters of crop growth and yield development  

Crop growth influential  
parameters 

Initial parameters 
(first iteration) 

Adjusted parameters 
(three number of runs) 

Parameter variation unit 
(from initial value) 

PHU    
(accumulated number of heat units) 1640 2017 +0.23 
Plant density    
(plants / m2) 5 4 -0.23 
Applied irrigation volume    
(mm / year)  1000 1200 +0.29 
Nitrogen application amount    
(mean annual amount in kg / ha) 
Phosphorous application amount  
(mean annual amount in kg / ha) 

85 / 82# 
 

63 / 57# 

101 /104# 
 

63 / 57# 

+0.23 
 

 –  
#The values represent the multiannual mean of N and P application rates on maize cultivation areas in Călărași and, 
Ialomița county, respectively.  
 
The spatial distribution of the estimated yields 
under the calibrated crop growth parameters 
(i.e. baseline scenario) highlights the strong 
effects of drought conditions on crop 
production (Figure 4), showing, for instance, 
that yields in 2007 were below 2 t / ha in many 
parts of the study area.  
Parameter adjustment at locality level further 
underpins the need to perform the calibration 
process on both crop and model structure 
parameters. In this respect, we considered 4 
localities in the study area where we knew from 
our field work experience that irrigation had 
not been applied particularly since agricultural 
privatization reforms have been enforced 
(Figure 3). 
Hence, all cropland in the calibration at locality 
level analysis was treated as rain-fed in order to 
reduce any possible bias by additional water 
supply given irrigation application.  
Previous studies found that simulated maize 
yield was sensitive to several input and model 
parameters, such as: planting date, PHU, HI 
(harvest index, i.e. the ratio of grain to total 
crop biomass under ideal growing conditions), 
WSYF (the lower limit of HI due to water 
stress), PARM03 (the fraction of maturity when 

water stress starts reducing the harvest index) 
and PARM42 (indicator that affects runoff and 
thus soil water and evapotranspiration) (Liu, 
2009; Wang et al., 2012; Folberth et al., 2012). 
 

 
Figure 3. Selected sites for validation (LAU level) 

in the Bărăgan Plain  
 
Therefore, our approach for calibration at loca-
lity level consisted in a systematic calibration 
implemented in a step-wise manner on mana-
gement input data (fertilization and planting 
density), crop phenology and cultivar properties 
(PHU, planting date, HI and WSYF) and model 
parameters (PARM03 and PARM42).  
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Figure 4. Simulated maize yields in the Bărăgan Plain during the drought and relatively normal or rainy years of the 

2000-2013 interval, based on model parameterization for actual crop management conditions (baseline scenario) 

 
The results showed a realistic improvement in 
model performance statistics, especially in the 
case of Budesti and Stelnica localities, with 
considerable decrease in the percentage of bias 
(PBIAS) between simulated and observed 
yields in all 4 cases during the calibration 
process (Figure 5). Enforcing parameter 
calibration first on 50 (first step), then on 25 
(second step) and lastly on 10 (third step) 
simulation iterations, it clearly led to a 
reduction in the differences between the 
simulated and reported yields by producing 
smaller objective functions and improving 
model performance statistics (e.g. adjusted R2 
reached in the end values between 72% and 
96%) (Figure 5).  

The improved crop management scenario 
shows, as expected, that higher nutrient and 
water application rates resulted in consistently 
higher simulated crop yields (Figure 6). The 
averaged crop yield values for drought and 
relatively normal-rainy years reach to 4 t / ha 
and 7 t / ha, respectively, while highest maize 
yields are closer to 10 t / ha. Moreover, 
minimizing water stress through increased 
irrigation it reduces the yield variation 
throughout the study area, especially in area 
equipped for irrigation (i.e. the coefficient of 
variation is much lower for the yields estimated 
during the normal-rainy years, 0.2, as compared 
to those estimated during drought years, 0.6).  
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The results obtained in this scenario support 
future analyses for examining which crops and 
agricultural areas could benefit more from 
improved fertilization levels and additional 
blue water (irrigation water), as well as where 
blue water would account more of a larger 

share of the total water demand. Such 
approaches are relevant for analyses regards 
water use efficiencies in the context of drought 
intensification and water demand increases in 
all economic sectors.  

 

 
 

 
Figure 5. Comparison between the reported yields and the simulated yields expressed by the 95PPU prediction 

uncertainty band and the best simulation obtained after a number of iterations evaluated through RSR criteria in four 
localities in the Bărăgan Plain. Two statistics, i.e. r-factor and p-factor, show the goodness-of-fit and the model 

uncertainty. Top row displays the yields simulated with the first model iteration, while the bottom row shows the 
calibrated model results. The model performance was evaluated in each case by several statistical criteria, like Nash-

Sutcliffe efficiency (NSE), R2 (coefficient of determination) and percent bias (PBIAS). The reported yields used in this 
calibration exercise were available for 2009-2012 / 2005-2011 periods. 
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Figure 6. Simulated maize yields in the Bărăgan Plain during the drought and relatively normal or rainy years of the 

2000-2013 interval, based on model parameterization for improved crop management conditions (improved crop 
management scenario) 

 
CONCLUSIONS  
 
EPIC+ proved to be a promising tool for 
calibration of the EPIC model and thus for 
future assessments on various topics ranging 
from agricultural resources use in various 
environments to soil quality and impacts on 
agricultural production. Similarly, the model 
can be used at different spatial and time scales 
and offers the possibility to implement different 
crop management strategies. However, the 
model reliability greatly depends of fine scale 
input data as well as on long-term available 
yield records for validation (Wang, et al., 2012; 
Abbaspour, 2015; Kamali et al., 2018).  
The sensitivity analysis on crop model 
parameters shows that PHU largely influences 
maize yields, suggesting a plus 23% change in 

the parameter´s space for model optimization 
process. This is particularly true because PHU 
sets the time scale (expressed in temperature 
rather than days), within which short PHU 
values give rapid early growth but less time to 
convert energy to biomass, thus highlighting 
the weather variables´ importance for crop 
yield (Liu, 2009). However, future studies 
could benefit from better estimation of PHU 
values using optimal crop calendars, more 
homogeneous units of simulation and longer 
climatic data ranges (Folberth et al., 2012; 
Flach et al., 2020). In this way it is possible to 
reduce the sources of uncertainty, especially in 
what regards model parameterization and to 
achieve higher consistency between PHU 
values and crop planting / harvesting dates. 
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In the calibration process, it was shown that 
with the adjustments of sensitive crop 
parameters and agricultural practices in the 
model setup, crop growth is, in many parts, 
mainly constrained by nutrient, temperature 
and water stress factors. Nevertheless, 
sensitivity analyses on parameters that 
influence, for instance, harvest index under 
water stress conditions or soil water are 
necessary. It is also recommended to consider 
soil input parameters into model calibration and 
validation procedures, given the influence of 
soil physical and chemical properties, 
especially through their water and nutrient 
storage capacities, on crop yield model 
simulations (Folberth et al., 2016).  
Moreover, whenever detailed information is 
available, particularly in terms of observed data 
on yields and other crop growth parameters 
(e.g. actual evapotranspiration), automatic 
calibration procedures offer possibilities to 
simultaneously adjust EPIC input parameters 
on cropland management, phenology, yield and 
cultivar properties, as well as on model 
influential parameters for the respective 
cropping system. In this study we used SUFI2 
module of EPIC+ (Kamali et al., 2018) to 
perform a systematic calibration of EPIC crop 
model at locality level, choosing four localities 
as exemplary showcases. The results were 
expressed by objective function, uncertainty 
quantification and model performance criteria. 
Automatic calibration procedures applied at 
locality level led to considerable reduction of 
biases between the simulated and reported 
yields by producing smaller objective functions 
and improving model accuracy.  
The application of the model requires suitable 
infrastructure given the large computational 
time needed for simulation runs and calibration, 
as well as collaborative research frameworks 
for its implementation. 
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