AN INVENTORY OF FLORISTIC COMPOSITION IN PERMANENT GRASSLANDS OF RUCĂR-BRAN CORRIDOR: APPLICATION AND PERSPECTIVES OF MELLIFEROUS POTENTIAL

Niculae DINCĂ¹, Ionela BARBU¹, Daniel DUNEA²

¹University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Agriculture 59 Marasti Blvd, District 1, 011464, Bucharest, Romania ²Valahia University of Targoviste, Faculty of Environmental Engineering and Food Science 18-24 Unirii Blvd, Targoviste, Romania

Corresponding author email: nicudinca@yahoo.com

Abstract

The paper presents the melliferous and landscaping inventories in the Rucăr-Bran Corridor to assess the corresponding non-pastoral utilization values for complementary valorization of grassland herbaceous canopies. The space occupied by permanent grasslands in the study area is home to 235 species of plants, which shows an increased biodiversity. The inventories showed that 36 species were grasses, 29 species were legumes, 12 species were sedges and bulrushes, and 158 species were from other botanical families. A number of 72 melliferous species was identified, most of them having also forage utilization. GIS analysis showed that the total area occupied by permanent grasslands in Rucăr-Bran Corridor and neighboring landforms based on Corine data is 5007.6 ha. Consequently, the honey production potential was evaluated between 5 and 10 t of honey. Depending on the number of species that form the heterogeneous canopy and their color of flowers, the ordering of dominant colors and tones was as follows: yellow (24.3%), green (21.3%), white (17.3%), red (14%), pink (8.1%), purple (7.2%), blue (6.4%), and brown (1.3%).

Key words: flower color, melliferous potential, non-pastoral utilization value, floristic composition.

INTRODUCTION

A basic principle of sustainable agriculture is the exploitation of natural resources to allow their regeneration and to maintain the resilience and stability of natural ecosystems. In agropastoral domain, this goal requires the use of herbaceous canopies for fodder purposes only up to the limit of resilience capacity (Puia et al., 2001). This signifies the knowing of the tolerance of permanent grassland ecosystem to anthropogenic actions, so that it does not suffer significant or irreversible modifications, which excludes the intensive operations and cropping practices, especially for the medium and longterm applications (Motcă et al., 2009). In the Rucăr-Bran Corridor, the economic efficiency of grasslands operations based usually on extensive cropping practices, can be achieved not only by using differentiated prices for ecological animal products, but also by valorizing complementary potentials in the system of grassland multifunctional utilization. According to the concept of grassland multifunctional utilization (Motcă et al., 2010;

Huyghe, 2009; Barrio and Vounouki, 2002) concomitant with the primary use of grasslands as a food source for livestock, either mowed or grazed, the valorization of the secondary potentials of floristic composition needs to be addressed, namely melliferous, medicinal, tourism-related, environmental protectionrelated, biodiversity conservation, and landscaping potentials.

Among the abovementioned potentials, the paper presents the melliferous and landscaping inventories to assess the corresponding nonpastoral utilization values for complementary valorization of grassland herbaceous canopies in the Rucăr-Bran Corridor. In the first step, biodiversity status was assessed by establishing the total number of species, the floristic composition based on their utilization, on spatial distribution (widely distributed, rare or endemic species), the species protected by law, and the species flower color.

The melliferous utilization potential was determined by identifying the melliferous species in the canopy structure based on the floristic composition, and by estimating the production of honey. Landscape potential was quantified using the structure and participation of species with colorful flowers and the color range.

Colors of species in a bee visual system, scent and phenology have potential key roles in attracting pollinators, which also have influence on honey production. Arnold et al. (2009) found that a foraging bee will not necessarily remain loval to a color or species of flower indefinitely, and might shift to other species if the previously visited variety is not available in the immediate vicinity. A flower colors' classification of the species occurring in the studied grasslands was performed to support future studies related to the melliferous utilization potential.

MATERIALS AND METHODS

The objectives of the study were carried out by performing inventories on the established itineraries in the central and northern districts of the Rucăr-Bran Corridor. During field surveys, floristic compositions were performed recording fodder. honey and medicinal utilization of species, stationary conditions for each survey, plant phenological stage, color of flowers, canopy height and other descriptive ecological and biological characteristics. The maintenance status of investigated grasslands and improvement operations applied in the year of observations were also investigated. Dry matter determinations and calculations of potential honey production of analyzed grasslands were carried out in the laboratory.

The real potential for honey production of each melliferous species is reduced because of the primary use of vegetation for fodder purposes. Therefore, an appropriate average production to the honey production potential of the less productive species was considered (Motcă, 2010). Quantities of 1-2 kg honey ha⁻¹ depending on the equivalent of 0.1 to 0.2 kg ha⁻¹ for each canopy coverage percent were adequate for the envisaged area of study.

Vector data from Corine land cover - version 16 (04/2012) was overlapped on the CGIAR SRTM 90 m digital elevation model in ESRI ArcGIS 9.3 to obtain a general map of permanent grassland distribution in Rucăr-Bran Corridor. Figure 1 presents the polygons of the delineated natural grasslands and of woodland shrubs existent in the region.

RESULTS AND DISCUSSIONS

In the studied area, four groups of zonal grassland types were identified as follows: *Agrostis capillaris* with mesophilic character on flat surfaces, *Agrostis capillaris* with mesoxerophilic on slopes, *Festuca rubra* and *Agrostis capillaris*, and *Festuca rubra* and *Nardus stricta* grasslands. Figure 2 presents the areas in hectares occupied by pastures in Rucăr-Bran Corridor and neighboring landforms resulted in GIS.

A number of 235 species was found in all the grasslands of these groups (Table 1), from which: 36 species of grasses (15.3%), 29 species of legumes (12.3%), 12 species of sedges and bulrushes (5.1%), and 158 species from other botanical families (67.3%).

Table 1. Floristic composition based on the potential
utilization of grassland vegetation (number of species)

Utilization	Grasses	Legumes	Sedges	Other families	Total species	Percentage %
Fodder (F)	36	22	-	21	69	29
Medicinal (M)	-	3	-	41	44	19
Melliferous (MF)	-	22	-	50	72	31
Total, from which	36	47	-	112	185	79
F+M	-		-	7	7	15
F+MF	-	17	-	5	22	47
F+M+MF	-	1	-	3	4	8
M+MF	-	2	-	12	14	30
Multifuncțio nal use - Total	-	20	-	27	47	20
Landscaping	36	29	12	158	235	100
Total of species in the canopy	36	29	12	158	235	100

The floristic composition surveys performed in the Rucăr-Bran Corridor based on species potential utilization and importance, have identified 69 forage species (29%), 72 melliferous species (31%), 44 medicinal species (19%), 47 multifunctional utilization species (20%), and 2 natural monuments species (1%) i.e. *Lilium martagon* (Turk's cap lily) and *Trollius europaeus* (globe-flower).

A number of 72 melliferous species was identified on the permanent grasslands, most of them having forage utilization. Because of their main use as fodder, the honey production potential of these species is diminishing accordingly. On the average, data for all the grasslands area in Romania showed that the melliferous potential is between 2.0 and 6.0 kg honey ha⁻¹. Other influencing factors are the altitude and the canopy cover percentage. We have found that the permanent grasslands in

Rucăr-Bran Corridor have a potential of 1-2 kg ha⁻¹ corresponding to 10-20% canopy cover.

GIS analysis showed that the total area occupied by permanent grasslands in Rucăr-Bran Corridor and neighboring landforms based on Corine data is 5007.6 ha. The spatial analysis was performed considering the polygons from 231 and 321 categories that are contained entirely or some portions within the Rucăr-Bran Corridor. Consequently, the honey production potential was evaluated between 5 and 10 t of honey.

The chromatic diversity of grasslands in various stages of flowering was observed because this trait is related to the landscape aspect, but also because flower colors attract pollinators, which also have influence on honey production.

Through their bright colors, the flowers of species located in the grasslands of Rucăr-Bran Corridor (central and northern districts) range within the whole spectrum of colors in visible, which favors an attractive landscape of inner natural grasslands (Table 2).

Due to the high degree of grass species participation in the canopy (50-80%), whose flowers have greenish color, this color is dominant in the areas of studied permanent grasslands. Therefore, the dominance of colors depends on the number of species with the same color in the heterogeneous canopy and the phenophase of development. Spatial and temporal repartition of foliage biomass and caulinar biomass is influencing the evolution of canopy architecture, which is a summing junction of the individual component forms pertaining to various species that form the heterogeneous canopy (Dunea and Moise, 2008).

Numerically, the predominant colors in the 6-7 months of growth season are shown in Table 2. Depending on the number of species that form the heterogeneous canopy and their color of flowers (Table 3), the ordering of dominant colors and corresponding tones was as following: yellow (24.3%), green (21.3%), white (17.3%), red (14%), pink (8.1%), purple (7.2%), blue (6.4%), and brown (1.3%).

Table 2 Floristic con	monition based on the color	of the flowers in the norman	ont grasslands of Ducăr Dran Corridor
Table 2. Fiolistic con	iposition based on the color	of the nowers in the permane	fill grassianus of Kucar-Bran Confuor

Pollinator-perceived color	Human-perceived color	Color Tone	Number of species	Participation (%)
		-	8	3.4
Blue; UV-Blue	Blue	Purplish	7	3.0
		Total	15	6.4
		-	37	15.7
Dhua anaan	White	Yellowish	2	0.8
Blue-green	white	Greenish	2	0.9
		Total	41	17.4
Ultraviolet (UV)	Brown	Total	3	1.3
		-	55	23.4
Green; UV-Green	Yellow	Greenish	2	0.9
		Total	57	24.3
		-	21	8.9
	D I	Orange	1	0.4
Ultraviolet (UV)	Red	Purplish	11	4.7
		Total	33	14.0
		-	14	6.0
	Pink	Reddish	2	0.9
Blue; UV-Blue		Purplish	3	1.2
		Total	19	8.1
Green		Greenish	49	20.9
	Green	Greenish- purplish	1	0.4
		Total	50	21.3
		-	8	3.4
		Blueish	2	0.9
		Purplish	5	2.1
Blue; UV-Blue; UV-Green	Purple	Purplish-reddish	1	0.4
		Pinkish	1	0.4
		Total	17	7.2
Main Color Total			235	100.0
Color Tone Total			92	39.1

Table 3. Identified species and corresponding human-perceived flower color in the permanent grasslands of Rucăr-Bran Corridor

	Human-		Human-		Human-
Grasses	perceived	Other families	perceived	Other families	perceived
	color		color		color
Agrostis capillaris	greenish	Achillea distans	white	Knautia arvensis	lilac-pink
Agrostis rupestris	greenish	Achillea lingulata	white	Knautia longifolia	red-lilac
Agrostis stolonifera	greenish	Achillea millefolium	white	Leontodon autumnalis	yellow
Alopecurus pratensis	greenish	Achillea setacea	white	Leucanthemum vulgare	white
Anthoxanthum odoratum	greenish	Achillea stricta	white	Leucanthemum waldsteineii	white
Apera spica venti	greenish	Agrimonia eupatoria	yellow	Ligusticum mutellina	pink
Arrhenatherum elatius	greenish	Alchemilla flabellata	yellow- greenish	Lilium martagon	pink- purple
Avenula versicolor	greenish	Alchemilla vulgaris	yellow- greenish	Linum catharticum	white- yellowish
Brachypodium pinnatum	greenish	Antennaria dioica	white	Lychnis flos-cuculi	pink
Briza media	greenish	Arnica montana	yellow	Lychnis viscaria	pink
Bromus arvensis	greenish	Artemisia austriaca	yellow	Lysimachia vulgaris	yellow
Bromus commutatus	greenish	Astrantia major	white- greenish	Melampyrum pratense	pink- purple
Bromus hordeaceus	greenish	Bellis perennis	white	Mentha pulegium	purple-lilac
Bromus japonicus	greenish	Bruckenthalia spiculifolia	pink-violet	Myosotis sylvatica	bluish
Cynosurus cristatus	greenish	Campanula abietina	violet	Origanum vulgare	purplish (lilac)
Dactylis glomerata	greenish	Campanula glomerata	violet	Parnasia pallustris	white
Danthonia decumbens	greenish	Campanula persicifolia	bluish-violet	Pedicularis verticillata	red
Deschampsia caespitosa	greenish	Campanula rotundifolia	bluish-violet	Peucedanum oreoselinum	white
Deschampsia flexuosa	greenish	Cardus acanthoides	red-violet	Phyteuma spicatum	white
Dichanthium ischaemum	greenish	Carlina acaulis	white	Pimpinella saxifrage	white
Elymus hispidus	greenish	Carum carvi	white	Plantago laceolata	white
Festuca pratensis	greenish	Centaurea jacea	red-violet	Plantago media	white
Festuca pseudovina	greenish	Centaurea mollis	bluish	Polygala vulgaris	bluish- purple
Festuca rubra	greenish	Centaurea phrygia	red-violet	Polygonum bistorta	pink
Festuca rupicola	greenish	Centaurea scabiosa	red-violet	Potentilla argentea	yellow
Festuca valesiaca	greenish	Centaurea triumfetti	bluish-violet	Potentilla aurea	vellow

	Holcus lanatus	greenish	Centaurium erythraea	red	Potentilla cinerea	yellow
	Lolium perenne	greenish	Cerastium arvense	white	Potentilla erecta	yellow
	Nardus stricta	greenish	Cerastium fontanum	white	Potentilla reptans	yellow
	Phleum phleoides	greenish	Chaerophyllum aromaticum	white	Potentilla ternate	yellow
	Phleum pratense	greenish	Cichorium intybus	bluish	Potentilla thuringiaca	yellow
	Poa compressa	greenish	Cirsium canum	red	Primula veris	yellow
	Poa namoralis	areenish	Circium arisithalas	vellow	Prunalla vulgaris	bluish-
	1 ou nemoralis	greenisii	Cirsium erisinules	yenow	1 runetta vulgaris	violet
	Poa pratensis	greenish	Cirsium vulgare	red	Pseudorchis whiteida	white
	Trisetum flavescens	greenish	Colchicum autumnale	violet	Pteridium aquilinum	brownish
	Vulpia myuros	greenish	Crataegus monogyna	white	Pulsatilla whitea	white
	Legumes		Crepis biennis	yellow	Ranunculus acris	yellow
	Anthyllis vulneraria	vellow	Dactylorhiza cordigera	pink	Ranunculus montanus	vellow
	Astragalus onobrychis	purple	Dactylorhiza maculata	pink	Ranunculus polyanthemos	vellow
	Coronilla varia	pink	Daucus carota	white	Ranunculus repens	vellow
	Dorvcnium pentaphyllum	white	Dianthus barbatus	red	Ranunculus sardous	vellow
	Genista tinctoria	vellow	Dianthus carthusianorum	red	Rhinanthus alectorolophus	vellow
	Genistella sagittalis	vellow	Dianthus superbus	nink	Rhinanthus angustifolius	vellow
	Lathyrus nissolia	red	Digitalis grandiflora	vellow	Rhinanthus major	vellow
	Lathyrus pratensis	vellow	Dinsacus fullonum	purple	Rumex acetosa	reddish
	Lathyrus sylvestris	nink	Echium vulgare	bluish	Rumex acetosella	reddish
	Lotus corniculatus	vellow	Frodium cicutarium	numle	Rumer crispus	reddish
	Lotus corniculuus	yenow	Erourum cicului ium	whitish-	Rumex erispus	purple.
	Medicago falcata	yellow	Eryngium campestre	greenish	Salvia nemorosa	bluich
				greenisii		nurnle
	Medicago lupulina	yellow	Eupatorium cannabium	red	Salvia officinalis	bluich
	Malilatus officinalis	vallary	Furthouting our avianian	vallaw	Saluia vorti oillata	biuisii
	On ohmushig visiifalig	yenow rad wielet	Euphoroia cyparissias	yellow	Salvia verticitata	puipie
	Onobrychis viciijolia	reu-vioiet	Euphrasia rosikoviana	white	Sanguisorba ojjicinalis	vallaw
	Trife lines also estas	pink	Euphrasia siricia	white	Scubiosa ochroieuca	yenow
	Trifolium alpestre	rea	Fragaria vesca	white	Scieraninus annuus	green
	Trifolium arvense	redaisn	Galium moliugo	white	Scorzonera rosea	pink
	Trijolium campestre	yellow	Galium oaoratum	white	Silene aioica	rea
	Trifolium aubium	yellow	Galium verum	yellow	Silene nutans	white
	Trifolium hybridum	pink	Gentiana asclepiadea	bluish	Silene vulgaris	white
	Trifolium medium	red	Gentiana utriculosa	bluish	Stachys germanica	red
	Trifolium montanum	white	Gentianella austriaca	purple	Stachys officinalis	purplish
	Trifolium ochroleucon	yellow	Geranium pratense	bluish	Stellaria graminea	white
	Trifolium pannonicum	white-	Geum montanum	vellow	Succisa pratensis	bluish-
		yellowish			~	violet
	Trifolium pratense	red-violet	Gnaphalium sylvaticum	brownish	Symphytum officinale	red-violet
	Trifolium repens	white	Gymnadenia conopsea	pink-reddish	Taraxacum officinale	yellow
	Vicia cracca	bluish-	Helianthemum	vellow	Thalictrum simplex	greenish-
	ricia cracea	violet	nummularium	yenow	Induced and Simplex	purple
	Vicia grandiflora	vellow	Hieracium aurantiacum	red-orange	Thymus alabrescens	pink-
	, icia granagiora	yenow	meracium aur annacum	red orange	Inymus glubreseens	reddish
	Vicia striata	violet-red	Hieracium bauhinii	yellow	Thymus montanus	red-violet
	Sedges and bulrushes		Hieracium lactucella	yellow	Thymus pannonicus	red-violet
	Carex caryophyllea	greenish	Hieracium pilosella	yellow	Thymus serpyllum	red-violet
	Carex ovalis	greenish	Holosteum umbellatum	white	Tragopogon dubius	yellow
	Carex panicea	greenish	Homogyne alpina	red	Tragopogon pratensis	yellow
	Carex spicata	greenish	Hypericum maculatum	yellow	Trollius europaeus	yellow
	Carex tomentosa	greenish	Hypericum montanum	yellow	Vaccinium myrtillus	pink
	Juncus articulatus	greenish	Hypericum perforatum	yellow	Vaccinium vitis-idaea	pink
	Juncus conglomeratus	greenish	Hypochaeris maculata	yellow	Veratrum whiteum	white
	Luzula alpinopilosa	greenish	Hypochaeris radicata	yellow	Veronica chamaedrys	bluish
	Luzula campestris	greenish	Hypochaeris uniflora	yellow	Veronica officinalis	violet
	Luzula luzuloides	greenish	Inula britannica	yellow	Viola canina	purple
	Luzula sudetica	greenish	Juniperus sibirica	brownish	Viola declinata	violet
	Luzula sylvatica	greenish	Jurinea mollis	red	Viola hirta	purple
_						

Table 3 presents the identified species and corresponding human-perceived flower color in the permanent grasslands of Rucăr-Bran Corridor. Green color and its tones characterize mostly the flowers of grasses and sedges species. Maximum abundance of flowers was recorded between May and July.

Flower species that are closely related may share both similar flowering times and similar pigmentation, possibly resulting in apparent abundances of particular colors, as perceived by humans, at particular times of year. However, this pattern is not reflected in the trends in flower color as perceived by various pollinators (Arnold et al., 2009). Table 2 shows also the floristic composition based on the pollinator-perceived color, because patterns in flower color based on human perception alone are insufficient. Bees perceive blue, ultraviolet, green, and various combinations of these color.

CONCLUSIONS

In ecological technologies, utilization of grassland canopies extends from the pastoral scope to complementary areas such as multifunctional utilization of natural flora as medicinal and melliferous resources in the context of biodiversity and natural ecosystems conservation, ecotourism and rural tourism development in the space of pastoral heritage.

The melliferous potential of permanent grasslands in Rucăr-Bran Corridor established using GIS support is 5 to 10 t, considering 1-2 kg honey ha⁻¹ corresponding to 10-20% canopy cover.

In terms of biodiversity, the space occupied by permanent grasslands in the study area is home to 235 species of plants, which shows an increased complexity. The maximum number of species was recorded at altitudes below 1000 m, in the *Fagus silvatica* sublevel, where *Agrostis capillaris*, and *Agrostis capillaris* + *Festuca rubra* grasslands prevail.

From the total number of species, 36 species were grasses, 29 species were legumes, 12 species were sedges and bulrushes, and 158 species were from other botanical families.

The flowers of species in the grasslands of Rucăr-Bran Corridor create an attractive landscape covering completely the visible spectrum. The predominant color and its corresponding tones in the flowering phenophase were yellow (24.3% of species), followed by green (21.3%), white (17.3%), and red (14%).

The unconventional system of grasslands multifunctional utilization from central and northern sectors of Rucăr-Bran Corridor requires the consideration of new technological sequences regarding the harvesting of medicinal plants and practicing of pastoral beekeeping, the implementation of measures to conserve the landscape and biodiversity.

REFERENCES

- Arnold S.E.J., Le Comber S.C., Chittka L., 2009. Flower color phenology in European grassland and woodland habitats, through the eyes of pollinators, Israel Journal of Plant Sciences, Vol. 57, p. 211-230.
- Barrio J., Vounouki E., 2002. The issues of multifunctionality in the Mediterranean rural space: Comparison of the Spanish and Greek cases (in French). Le courrier de l'environnement, ^{p.} 47.
- Dunea D., Moise V., 2008. Artificial neural networks as support for leaf area modelling in crop canopies, New Aspects of computers. Proceedings of the 12th WSEAS International Conference on Computers, p. 440-446.
- Huyghe C., 2009. The multifunctionality of grasslands in France II. Balance of production and environment conservation (*in French*), Cahiers Agriculture, Vol. 18 (1), p. 7-16.
- Motcă Gh., Maruşca T., Cardaşol V., Glăvan A.-M., Grama V., Ujupan G., 2009. Research concerning the resilience capacity of mountain grasslands. Scientific papers, USAMV Bucharest, Series A, Vol. LII, p. 367-372.
- Motcă Gh., 2010. Experimental results concerning grasslands multifunctional exploitation. Romanian Journal of Grasslands and Forage Crops, Cluj-Napoca, vol. 2, p. 27-36.
- Puia I., Soran V., Carlier L., Rotar I., Vlahova M., 2001. Agroecology and ecodevelopment (in Romanian). Academicpres Publishing House, Cluj-Napoca.