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Abstract

Cereals are found in many foods. Testing their authenticity is necessary to comply with the rules of labeling and to 
avoid unfair competition. To protect consumers, European Union (EU) law requires labeling of ingredients that cause 
allergies or intolerances, especially for cereals containing gluten, such as wheat (including common wheat, durum 
wheat, spelled wheat), rye, barley, oats or their hybridized strains and products thereof (OJEU, 2011; OJEU, 2014). 
Thus, the identification of cereals in a product is of paramount importance, not only to prevent the risks related to food 
safety in sensitive or allergic persons but also to avoid economic fraud.
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INTRODUCTION

Cereals are present in many food products. 
Authenticity testing it is necessary in order to 
comply to labelling norms and avoid unfair 
competition. 
EU regulations impose mentions on products 
labels of ingredients that could induce allergies
or intolerance reactions, especially for gluten 
presence in such as wheat (including common 
wheat, durum wheat, spelled wheat), rye, 
barley, oats or their hybridized strains and 
products thereof (OJEU, 2011; OJEU, 2014).
Thus, the identification of cereals in a product 
is of paramount importance, not only to prevent 
the risks related to food safety in sensitive or 
allergic persons but also to avoid economic 
fraud (James and Schmidt, 2004).
The authenticity of cereals has been based in 
recent years on high performance techniques 
analyzing either protein content or DNA 
(Hernandez et al., 2005; Tavoletti et al., 2009; 
Bottero and Dalmasso, 2011). 
The use of Real time PCR with TaqMan 
samples is a good alternative when specific and 
sensitive detection of the smallest DNA 
fragments is required, such as in processed 
foods (Bottero and Dalmasso, 2011; Hernandez 
et al., 2005; Tavoletti et al., 2009).

The increased number of researches generated 
the need of systematic revues (Simpkims and
Harrison, 1995). However new results make 
necessary new revues.

MATERIALS AND METHODS

The present article reviews some of the main 
researches in cereal authenticity, focused on 
wheat. There are considered genetic studies, 
different analysis technics, including 
spectrometry or PCR. The selection considered 
also a diachronic approach for PCR studies 
section, in order to suggest the evolution of 
researches focuses in the field.

RESULTS AND DISCUSSIONS

Luo et al. (2015), Li et al. (2016) used the 
method of element analyser-stable isotope ratio 
mass spectrometry, in order to discriminate the 
geographical origin of wheat, d13C and d15N 
values. Studies on magnetic field effect on cell 
differentiation on different wheat genotypes 
showed that differences between wheat 
genotypes and level of magnetic fields were 
significant (Kahrizi et al., 2013). Brescia et al.
(2002) established that the isotopic signature 
can be used to develop reliable fingerprints for 
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regional determination. IR spectrometry was 
used in order to develop simple, rapid 
technology to determine the origin of products 
(González-Martín et al., 2014; Zhao et al.,
2013), as well as to determine wheat species 
(Ziegler et al., 2016). Fuzzy chromatographic 
mass spectrometry proved to be efficient in 
discriminate between whole wheat and refined 
wheat flours (Geng et al., 2016). Koenig et al.
(2015) used HPLC technics to classify spelt 
cultivars, from ‘typical spelt’ to ‘similar to 
common wheat’.  
Mass spectrometry, combined with 
polyacrylamide gel electrophoresis and two-
dimensional gel electrophoresis were used for a 
proteomic study to characterize serpin 
polymorphisms along 177 Australian and 19 
foreign hexaploid as well as 6 tetraploid wheat 
varieties (Wu et al., 2012).
Konieczny et al. (2005), studied the 
extracellular matrix surface network 
transformation during plant regeneration for 
wheat anther culture. Microscopic observations 
revealed two distinct types of cells on the callus 
surface, arranged in multicellular clusters.
Determination of multi-element composition of 
wheat proved to be effective in developing a
fingerprint of geographical origin (Zhao et al.,
2013).
Popping (2002), Pauli et al. (2014), Zörb et al.
(2009) used chemical methods to determine 
authenticity of wheat, or adulterations, 
including for Triticum aestivum L.
Voorhuijzen et al. (2011), developed a padlock 
probe ligation and detection method, a DNA-
based multiplex detection tool to determine 
traceability and authenticity for crop plant 
materials, wheat included. 
Mass spectrometry proves to be an effective 
method in contaminants and food adulteration 
detection (Gharechahi et al., 2016).
Escherichia coli expression, Western blotting 
and tandem mass spectrometry were used to 
identify and confirm authenticity of two novel 
x-type HMW-GS from wheat line CNU608, as 
possibly originated from one octapeptide 
deletion and two unequal cross-over events 
(Wang et al., 2016; Liang et al., 2015).

Genetic studies
Wang et al., 2000, contributed to the first 
comprehensive analysis made of restriction 

fragment length ploimorphism of the 
mitochondrial (mt) DNA of Triticum aestivum
L. This led to clarification of the nature of 
mtDNA variability.
Maat, 2001, offers an overall analysis on 
genetic researches and stakeholders 
cooperation in wheat breeding in Netherlands, 
as a best practice experience. 
Genetic analysis of Russian wheat, the history 
of prebreeding studies and the genetic diversity 
evaluation is reviewed by Mitrifanova (2012),
Novoselskaya-Dragovich et al. (2015).
Results of some new approaches, like “systems 
biology”, “genome informatics” or “computa-
tional genome science” are concentrated on 
pre-mRNA splicing, organisation of 
transposable elements, identification of protein-
coding genes and RNA genes were developed 
into tools by Brendel et al. (2004). Gremme et 
al. (2005) proposed a software predictive tool 
for gene structure in higher organisms.
The analysis of several storage protein loci, 
allow differentiating Asian and European 
Triticum spelta L. (Kozub et al., 2014).
Microsatellite markers and in situ hybridization 
are valuable techniques in molecular analysis 
of triticale lines with different vrn gene systems 
(Leonova et al., 2005), as well in confirming 
the authenticity of inter-varietal chromosome 
substitution lines of Triticum aestivum L.
(Pestsova et al., 2000).
Schmidt et al. (2004), Kara et al. (2018), used 
microsatellite SSR markers in molecular 
characterization of Triticum aestivum L.
genotype. The results demonstrate the utility of 
microsatellite markers for detecting 
polymorphism to estimate genetic diversity.
Similar researches were conducted by Ahmad 
et al. (2018), on studying molecular diversity of 
Triticum aestivum L. genotypes resistance to 
rice weevi (Sitophilus oryzae L.). Results 
indicated that microsatellite markers are able to 
acces genetic diversity among wheat genotypes 
for weevil resistance.
Genetic similarity studies with SSR markers 
were conducted on 43 wheat varieties to reveal 
genetic relationships in wheat varieties by 
Zhang et al. (2002). Studies revealed that 
genetic similarities should be based on data 
from all genomes, rather than any one genome.
Assessing genetic modification impact on 
allergenicity of wheat species concluded that 
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the differences observed between GM wheats 
and their parents are within the range of 
cultivated wheats (Lupi et al., 2014) 
Song et al. (2002), determined the abundance 
of nine different trinucleotide microsatellites in 
the wheat genome, the repeat length 
distributions of
each and the rates at which they could be 
developed into informative markers.
The stress tolerance traits in wheat revealed 
that 11 important quantitative trait loci clusters 
located on chromosomes 1 BL, 1D, 2A, 2B, 
4A, 6B and 7B (Zhang et al., 2014). Disease 
resistance studies showed that a wheat - L. 
mollis double substitution line DM96 could 
induce high resistance to stripe rust and 
Fusarium head blight (Zhao et al., 2013). 
Influence of regional origin, harvest year and 
genotypes are significant in the fingerprints of 
the wheat kernels (Liu et al., 2015).
Korzun et al. (1997) showed the role of 
microsatellites and their markers as a tool in 
determination of wheat authenticity.
The combining ability and authentication of F1
hybrids in Triticum aestivum L. using SSR 
markers revealed that LU26S as best general 
combiner for plant height (Ahmet et al., 2012).
New progress was reported on utilization of 
Golden Ball (GB) wheat cultivar and Langdon 
- GB lines for genetic and genomic studies in 
tetraploid wheat and for improvement of stem 
solidness in both durum and bread wheat (Xu et 
al., 2014).
Genetic studies on heat stress for Triticum 
aestivum L. observed significant differences 
among the 19 genotypes considered (Pankjj et 
al., 2019).
Low-molecular-weight glutenin subunits 
encoded by Glu-3 complex loci in hexaploidy 
wheat, were found to impact the flour quality, 
as a comprehensive study revealed. Molecular 
characteristics and functional properties were 
conducted (Zhen et al., 2014).
Researches on chinese wheat Triticum aestivum 
L. landrace Banjiemang identified two novel 
HMW-GS genes, designated as 1Bx14* and 
1Bx15*, novel allelic variations of HMW-GS 
at Glu-B1 locus, which were probably 
exploitable as new resources for quality 
improvement of Triticum aestivum L. (Shao et 
al., 2015).

Authentication of Triticum aestivum L. lines 
with specific rust resistance using molecular 
markers were done for yielding cultivars 
PBW343, UP2338 and WH542, used to 
incorporate multiple rust resistance genes from 
winter wheat or agronomical inferior wheat 
lines (Datta et al., 2008).
By using quantitative trait locus (QTL) 
detection techniques, Cui et al. (2012), found 
that though co-located QTL were universal, 
every trait owned its unique QTL and even two 
closely related traits were not excluded.
Chromosome sequencing techniques were used 
to reveal the partitioning correlated with 
meiotic recombination for 1-gigabase 
chromosome 3B of hexaploidy bread wheat.
Comparative analyses indicated high wheat-
specific inter and intrachromosomal gene 
duplication activities, source of variability, for 
increased adaptability (Choulet et al., 2014).
Kabir et al. (2015) also used two wheat 
populations in mapping QTL’s associated with 
root traits. Root morphological parameters 
were measured for both populations. In total, 
54 QTLs for roots traits were detected.
Bagherikia et al. (2014), studied translocation 
of chromosome arm 1RS (Secale cereale) to 
Triticum aestivum L. improvement. 1AL.1RS 
offering higher biotic and abiotic stress 
tolerance. Results 1AL.1RS confirmed 
“Sholeh” wheat cultivar as the only cultivar 
(1.5%) that carries 1AL.1RS, as a successful 
translocation process result.
The full-length cDNA sequence (1158 bp) 
encoding a ribosomal L5 protein, designated as 
TaL5, was firstly isolated from common wheat 
(Triticum aestivum L.) using the rapid 
amplification of cDNA ends method (RACE). 
Stress studies indicated that TaL5 gene was 
dramatically induced by salt, drought and 
freezing. These implied that TaL5 gene could 
preserve function in several stress conditions in 
whaet plants (Kang et al., 2012).
Molecular cloning techniques were applied to 
isolate the starch-branching enzymes isoform 
SBEIII cDNA sequence (3,780 bp) from 
common wheat (Triticum aestivum L.) using 
RACE. The SBE activity of the protein 
expressed in Escherichia coli (BL21) was 
measured and verified. During the wheat grain
filling period, TASBEIII was constitutively 
expressed (Kang et al., 2013).
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Molecular characterization using real-time 
PCR method 
Adulteration studies on wheat variety content 
in traditional Italian pasta addressed 
identification of Triticum aestivum L. presence, 
as adulteration agent to Triticum durum. The 
PCR of some sequences of T. aestivum has 
been optimised using two sets of primers 
designed on puroindoline b gene. The analyses 
showed that this method works well also on 
high-temperature dried pasta (Arlorio et al.,
2003). Similar interest showed the studies of 
Terzi et al. (2003). They proposed qualitative 
and quantitative PCR-based methods to detect 
hexaploid wheat adulteration in pasta.
PCR techniques were designed for phyloge-
netic analysis of 59 external transcribed spacers 
(ETS) region of the 18S ribosomal RNA genes 
for some species, including Triticeae. It was 
demonstrated that the complete ETS sequences 
of the Triticeae yeld coherent phylogenetic 
information (Sallares and Brown, 2004).
Mafra et al. (2008), revue on main novelties on 
animal products food authentication based on 
PCR methods. They emphasized on the method 
effectiveness in species authentication or
detection of allergens and GMOs.
PCR was revealed as most efficient method for 
a rapid and specific wheat virus diagnostic tool 
that also has the potential for investigating the 
epidemiology of viral diseases, like dwarf 
viruses or mosaic viruses (Deb and Anderson, 
2008).
The method was extended in detecting also 
vector leafhopper (Psammotettix alienus 
Dahlb.), by Zhang et al. (2010).
A combination of STS markers and multiplex 
PCR techniques for Glu-A3 alleles in Triticum 
aestivum L. The markers and multiplex-PCR 
systems were validated on 141 CIMMYT 
wheat varieties and advanced lines with 
different Glu-A3 alleles, confirming that they 
can be efficiently used in marker-assisted 
breeding (Wang et al., 2010)
Specific detection and quantification of 
Aspegillus flavus and Asperigillus parasiticus
in wheat flour was studied using two qPCR 
assays. Both assays could detect spore 
concentrations equal or higher than 106 
spores/g in flour samples without prior 
incubation. The assays proved to be valuable 
tools to improve diagnosis at an early stagein 

all critical control pointa of food chain (Patiño 
et al., 2011).
Real-time PCR was tested in quantification of 
wheat contamination in gluten-free for for 
celiac patients. Values obtained were compared 
with those from R5 ELISA. They were similar 
for majority of tests; however real-time PCR 
showed a better sensitivity of the DNA for 
some samples. The method was proposed to be 
used also as a non-immunological tool to 
confirm the presence of wheat (Mujico et al.,
2011).
One hundred and eighty-two bread wheat 
cultivars were characterised for low molecular 
weight glutenins using SDS-PAGE and allele-
specific PCR. Data found greater consistency 
between SDS-PAGE and PCR amplification 
patterns for some of the alleles and less 
consistency for others. More studies are needed 
in order to achieve unambiguous identifications 
(Ram et al., 2011)
Amar et al. (2012) studied predictive and early 
detection of mycotoxigenic Fusarium 
culmorum in wheat. They used multiplex PCR 
to detect toxigenic agent with no need of prior 
DNA extraction. They concluded the method is 
a suitable strategy for high throughput 
screening of mycotoxigenic Fusarium.
PCR assay was used in confirming the presence 
of HMW-GS in the 29 genotypes of wheat. 
Differences between Arabian Australian and 
American varieties were identified (Ghazi et 
al., 2012). 
Kutateladze et al. (2013), have developed 
methods of reliable and fast detection of maize 
(Zea mays L.) wheat (Triticum aestivum L.)
and soybean (Glycine max L.). They used novel 
multiplex PCR techniques. New soybean and 
maize specific PCR-primers were developed, as 
well as a species-specific triplex PCR targeting 
maize invertase gene, soybean lectin gene and 
wheat low-molecular-weight glutenin subunit.
Authentication of wheat, barley, rye and oats in 
food and feed was studied using four TaqMan 
real-time PCR assays. Three specific primers 
were used. The system showed high specificity 
and sensitivity in experimental flour binary 
mixture. Method was further applied for 270 
food and pet food products, proving to be a
effective tool in authentication of foods with 
different labelling schemes, in which the 
presence of the targeted cereals was either 
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declared, not declared or declared as possible 
traces (Pegels et al., 2015).
Studies on Fusarium head blight caused by 
Fusarium graminearum were performed in 
order to discriminate quantitative resistance in 
barley and wheat genotypes. A pathogen 
inoculation and a quantitative PCR based 
protocol were reported. 
The method proved to be effective and could be 
applied for medium to high throughput barley 
and wheat breeding programmes (Kumar et al.,
2015).
Carloni et al. (2017) developed new PCR-
related techniques to detect common wheat 
adulteration of durum wheat for pasta 
production. They demonstrated the limits of the 
method based on gliadin gene. A new 
molecular method, based on DNA extraction 
from semolina and real-time PCR
determination of Triticum aestivum L. in 
Triticum spp., was validated.
The variation of high-molecular-weight 
glutenin subunits in wheat was studied, based 
on a combination of two techniques, PCR 
amplification and digestion with 
endonucleases. Data allowed detection of 
allelic variations that were not clearly by one 
technique alone (Wang et al., 2018).
Silleti et al. (2019), studied untargetet DNA-
based methods for authentication of ancient 
wheat species and other cereals, present in 
modern food products, particularly pasta, bread 
and cookies. They used DNA fingerprinting 
through tubulin-based species and tested a 
series of commercial food products. The assay 
has a sensitivity of 0.5-1% w/w in binary detect 
possible adulterations.

CONCLUSIONS

There are a large variety of analytical methods 
in determination and authentication of cereals. 
Infrared techniques, mass spectrometry, 
chromatography and chemical determinations 
are however less studied compared to genetic 
methods, PCR particularly. The last years the 
scientists are more focussed in refining old 
techniques, overcoming their limits by 
developing new assays or by using complex 
mixture of techniques.
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